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Preface

This Guide describes how to use the Fire Dynamics Simulator (FDS). Because new features are added
periodically, check the current version number on the inside front jacket of this manual.

Note that this Guide does not provide the background theory for FDS. A four volume set of companion
documents, referred to collectively as the FDS Technical Reference Guide [1], contains details about the
governing equations and numerical methods, model verification, experimental validation, and configuration
management. The FDS User’s Guide contains limited information on how to operate Smokeview, the com-
panion visualization program for FDS. Its full capability is described in the Smokeview User’s Guide [2].
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Disclaimer

The US Department of Commerce makes no warranty, expressed or implied, to users of the Fire Dynamics
Simulator (FDS), and accepts no responsibility for its use. Users of FDS assume sole responsibility under
Federal law for determining the appropriateness of its use in any particular application; for any conclusions
drawn from the results of its use; and for any actions taken or not taken as a result of analysis performed
using these tools.

Users are warned that FDS is intended for use only by those competent in the fields of fluid dynamics,
thermodynamics, heat transfer, combustion, and fire science, and is intended only to supplement the in-
formed judgment of the qualified user. The software package is a computer model that may or may not have
predictive capability when applied to a specific set of factual circumstances. Lack of accurate predictions
by the model could lead to erroneous conclusions with regard to fire safety. All results should be evaluated
by an informed user.

Throughout this document, the mention of computer hardware or commercial software does not con-
stitute endorsement by NIST, nor does it indicate that the products are necessarily those best suited for the
intended purpose.
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The Basics of FDS
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Chapter 1

Introduction

The software described in this document, Fire Dynamics Simulator (FDS), is a computational fluid dynamics
(CFD) model of fire-driven fluid flow. FDS solves numerically a form of the Navier-Stokes equations
appropriate for low-speed (Ma < 0.3), thermally-driven flow with an emphasis on smoke and heat transport
from fires. The formulation of the equations and the numerical algorithm are contained in the FDS Technical
Reference Guide [1]. Verification and Validation of the model are discussed in the FDS Verification [3] and
Validation [4] Guides.

Smokeview is a separate visualization program that is used to display the results of an FDS simulation.
A detailed description of Smokeview is found in a separate User’s Guide [2].

1.1 Features of FDS

The first version of FDS was publicly released in February 2000. To date, about half of the applications of
the model have been for design of smoke handling systems and sprinkler/detector activation studies. The
other half consist of residential and industrial fire reconstructions. Throughout its development, FDS has
been aimed at solving practical fire problems in fire protection engineering, while at the same time providing
a tool to study fundamental fire dynamics and combustion.

Hydrodynamic Model FDS solves numerically a form of the Navier-Stokes equations appropriate for low-
speed, thermally-driven flow with an emphasis on smoke and heat transport from fires. The core algo-
rithm is an explicit predictor-corrector scheme, second order accurate in space and time. Turbulence is
treated by means of Large Eddy Simulation (LES). It is possible to perform a Direct Numerical Simu-
lation (DNS) if the underlying numerical mesh is fine enough. LES is the default mode of operation.

Combustion Model For most applications, FDS uses a single step, mixing-controlled chemical reaction
which uses three lumped species (a species representing a group of species). These lumped species are
air, fuel, and products. By default the last two lumped species are explicitly computed. Options are
available to include multiple reactions and reactions that are not necessarily mixing-controlled.

Radiation Transport Radiative heat transfer is included in the model via the solution of the radiation trans-
port equation for a gray gas, and in some limited cases using a wide band model. The equation is solved
using a technique similar to finite volume methods for convective transport, thus the name given to it
is the Finite Volume Method (FVM). Using approximately 100 discrete angles, the finite volume solver
requires about 20 % of the total CPU time of a calculation, a modest cost given the complexity of radi-
ation heat transfer. The absorption coefficients of the gas-soot mixtures are computed using the RadCal
narrow-band model [5]. Liquid droplets can absorb and scatter thermal radiation. This is important in
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cases involving mist sprinklers, but also plays a role in all sprinkler cases. The absorption and scattering
coefficients are based on Mie theory.

Geometry FDS approximates the governing equations on a rectilinear mesh. Rectangular obstructions are
forced to conform with the underlying mesh.

Multiple Meshes This is a term used to describe the use of more than one rectangular mesh in a calculation.
It is possible to prescribe more than one rectangular mesh to handle cases where the computational
domain is not easily embedded within a single mesh.

Parallel Processing FDS employs OpenMP [6], a programming interface that exploits multiple process-
ing units on a single computer. For clusters of computers, FDS employs Message Passing Interface
(MPI) [7]. Details can be found in Section 3.2.2.

Boundary Conditions All solid surfaces are assigned thermal boundary conditions, plus information about
the burning behavior of the material. Heat and mass transfer to and from solid surfaces is usually handled
with empirical correlations, although it is possible to compute directly the heat and mass transfer when
performing a Direct Numerical Simulation (DNS).

1.2 What’s New in FDS 6?

Many of the changes in FDS 6 are improvements to the various sub-models that do not affect the basic
structure or parameters of the input file. Most of the changes listed below do not require additional input
parameters beyond those used in FDS 5.

Hydrodynamics and Turbulence

• Conservative, total variation diminishing (TVD) scalar transport is implemented: Superbee (LES de-
fault) and CHARM (DNS default). These schemes prevent over-shoots and under-shoots in species
concentrations and temperature.

• Improved models for the turbulent viscosity are implemented: Deardorff (default), Dynamic Smagorin-
sky, and Vreman. These models provide more dynamic range to the flow field for coarse resolution and
converge to the correct solution at fine resolution.

• The conservative form of the sensible enthalpy equation is satisfied by construction in the FDS 6 for-
mulation, eliminating temperature anomalies and energy conservation errors due to numerical mixing.

• The baroclinic torque is included by default.

• Improvements are made to the wall functions for momentum and heat flux. An optional wall heat flux
model accounts for variable Prandtl number fluids.

• Jarrin’s Synthetic Eddy Method (SEM) is implemented for turbulent boundary conditions at vents.

Species and Combustion

• Custom species mixtures (“lumped species”) can be defined with the input group SPEC.
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• Turbulent combustion is handled with a new partially-stirred batch reactor model. At the subgrid level,
species exist in one of two states: unmixed or mixed. The degree of mixing evolves over the FDS time
step by the interaction by exchange with the mean (IEM) mixing model. Chemical kinetics may be
considered infinitely fast or obey an Arrhenius rate law.

• It is now possible to transport, produce, and consume product species such as CO and soot. Chemical
mechanisms must be provided by the user and may include reversible reactions.

• It is now possible to deposit aerosol species onto surfaces.

• There are an increased number of predefined species that now include liquid properties.

Lagrangian Particles

• The functionality of Lagrangian particles has expanded to include the same heat transfer and pyrolysis
models that apply to solid walls. In other words, you can now assign a set of surface properties to planar,
cylindrical, or spherical particles much like you would for a solid surface.

• More alternatives and user-defined option are available for the liquid droplet size distribution.

• You can specify the radiative properties of the liquid droplets.

• Drag effects of thin porous media (i.e., window screens) can be simulated using planes of particles.

Solid Phase Heat Transfer and Pyrolysis

• The basic 1-D heat transfer and pyrolysis model for solid surfaces remains the same, but there has been
a change in several of the input parameters to expand functionality and readability of the input file.

• The pyrolysis model allows for the surface to shrink or swell, based on the specified material densities.

HVAC

• Filters, louvered vents, and heating/cooling capability has been added for HVAC systems.

• HVAC is now functional with MPI.

Radiation

• RadCal database has been extended to include additional fuel species.

• In cells with heat release, the emission term is based on a corrected σ T 4 such that when this term is
integrated over the flame volume the specified radiative fraction (default 0.35) is recovered. This differs
from FDS 5 and earlier where the radiative fraction times the heat release rate was applied locally as the
emission term.

Multi-Mesh Computations

• By default, FDS now iterates pressure and velocity at mesh and solid boundaries. You can control the
error tolerance and maximum number of iterations via parameters on the PRES line.
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Control Functions

• CTRL functions have been extended to include math operations.

• The evaluation of RAMPs and DEVCs can be stopped, freezing their value, based upon the activation of a
device or control function.

Devices and Output

• Multiple pipe networks can be specified for sprinklers for reduction of flow rate based on the number of
operating heads.

• The numerical value of a control function can be output with a DEVC.

• A line of devices can be specified using a number of POINTS on one DEVC line.

• Statistical outputs for RMS, covariance, and correlation coefficient are available.

1.3 Changes to Input Parameters in FDS 6

This section describes the changes in the input parameters between FDS version 5 and version 6. Table 1.1
lists in alphabetical order parameters from FDS 5 that have changed. Note that this table does not list new
parameters in FDS 6.

There has been a limited amount of backward compatibility programmed into FDS 6. In other words,
several commonly used parameters and conventions from previous versions still work, but you are encour-
aged to gradually modify your input files to conform to the new conventions. Gradually, obsolescent features
will be removed. Some of the more notable changes in FDS 6 are:

• If you want to model a fire, you must include a REAC line with a specified FUEL. See Chapter 13 for
details.

• The output quantity ’MIXTURE_FRACTION’ has been replaced with ’MIXTURE FRACTION’ and is
only usable if there is a single REAC input of the form A + B→C and INITIAL_UNMIXED_FRACTION=0.

• There is no longer a STATE_FILE because there is no longer a simple mixture fraction model.

• PRESSURE_CORRECTION has been eliminated. See Section 6.6 for ways to improve the performance of
the pressure solver.

• Species mass and volume fraction outputs are no longer invoked using QUANTITY=’species name’.
Use QUANTITY=’MASS FRACTION’ or QUANTITY=’VOLUME FRACTION’ along with SPEC_ID in-
stead. Also note that all predefined species (Table 12.1) are now referenced with all uppercase letters.

• The output quantity ’SOOT VOLUME FRACTION’ is now ’AEROSOL VOLUME FRACTION’ along with
SPEC_ID to identify the name of the species.
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1.4 A Note on Longer Run Times in FDS 6

A number of changes made in FDS 6 are aimed at improving the robustness and accuracy of the simulations.
However, these improvements come at increased cost in both CPU time and memory usage. Some of this
increased cost is offset by increasingly faster computers and improved parallel processing. In particular,
starting with FDS 6.1.0, the default released version of FDS will employ OpenMP [6] by default. OpenMP
is a programming interface that enables FDS to exploit multiple processing units on a given computer.
Most Windows-based personal computers now come with multi-core processors, but past versions of FDS
could only exploit a single core for a given calculation. With this new release and the increasingly faster
processors available on the market, FDS 6 ought to maintain and eventually surpass the computing speed of
past versions.

Listed below are suggested ways to decrease CPU time, but these options should be considered very
carefully. The default parameter settings are designed to address a wide range of fire scenarios, but there
are scenarios for which approximations used in past versions of FDS may still be appropriate. The best way
to determine if one or more of these time-saving assumptions is appropriate, run identical simulations with
and without the assumption to determine if the difference in results is acceptable.

1. The improved turbulence model in FDS 6 has been found to produce comparable results to older versions
of FDS using slightly less refined numerical grids. Section 6.3.6 introduces a dimensionless parameter,
D∗/δx, that indicates the number of grid cells of dimension δx that span the characteristic width of the
fire, D∗. A grid resolution study should be performed to determine the loss of accuracy caused by a
reduced value of D∗/δx.

2. One reason for the increased CPU cost of FDS 6 is the more precise treatment of gas species prop-
erties. Previous versions of FDS assumed that the specific heat of a gas species is solely depen-
dent on its molecular weight, and that the ratio of specific heats, cp/cv, is equal to 1.4, a value ap-
propriate for a diatomic gas like nitrogen, N2. Section 12.1.2 provides more details. FDS 6 now
assumes that gas species are temperature-dependent, and this assumption increases the cost of the
calculation in a number of different routines, in particular the calculation of the divergence. If you
set CONSTANT_SPECIFIC_HEAT_RATIO=.TRUE. together with STRATIFICATION=.FALSE. on the
MISC line, you can once again assume that the gas species are all diatomic. For scenarios where the
overall compartment temperature does not approach flashover conditions, this assumption might be ap-
propriate.

3. In situations where you are simulating a relatively small fire in a relatively large space and you are
not interested in heat fluxes to surrounding structures, it might be reasonable to turn off the radiation
transport calculation by setting RADIATION equal to .FALSE. on the RADI line. FDS will still assume
that a fixed fraction of the fire’s energy is radiated away, only now the energy is simply removed from
the calculation.

4. In situations where the heat transfer conditions are stationary or change only gradually, you can reduce
the cost of the radiation solution by reducing the temporal resolution. More details in Section 14.1.2. A
sensitivity study should be performed to determine the loss of accuracy.
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Chapter 2

Getting Started

FDS is a computer program that solves equations that describe the evolution of fire. It is a Fortran program
that reads input parameters from a text file, computes a numerical solution to the governing equations, and
writes user-specified output data to files. Smokeview is a companion program that reads FDS output files
and produces animations on the computer screen. Smokeview has a simple menu-driven interface. FDS
does not. However, there are various third-party programs that have been developed to generate the text file
containing the input parameters needed by FDS.

This guide describes how to obtain FDS and Smokeview and how to use FDS. A separate document [2]
describes how to use Smokeview.

2.1 How to Acquire FDS and Smokeview

Detailed instructions on how to download executables, manuals, source-code and related utilities, can be
found at the project home page:

https://pages.nist.gov/fds-smv/

The typical FDS/Smokeview distribution consists of an installation package or compressed archive, which
is available for MS Windows, Mac OS X, and Linux.

If you ever want to keep an older version of FDS and Smokeview, copy the installation directory to some
other place so that it is not overwritten during the updated installation.

2.2 Computer Hardware Requirements

The only hard requirement to run the compiled versions of FDS and Smokeview is a 64 bit Windows, Linux,
or Mac OS X operating system. The single computer or compute cluster ought to have fast processors
(CPUs), and at least 4 GB RAM per processor. The CPU speed will determine how long the computation
will take to finish, while the amount of RAM will determine how many mesh cells can be held in memory.
A large hard drive is required to store the output of the calculations. It is not unusual for the output of a
single calculation to consume more than 1 GB of storage space.

Most computers purchased within the past few years are adequate for running Smokeview with the
caveat that additional memory (RAM) should be purchased to bring the memory size up to at least 2 GB.
This is so the computer can display results without “swapping” to disk. For Smokeview it is also important
to obtain a fast graphics card for the PC used to display the results of the FDS computations.
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The MPI version of FDS requires shared disk access to each computer where cases will be run. On
Windows systems this involves a domain network with the ability to share folders. On a Linux or Mac OS X
system this involves NFS cross mounted files systems with ssh keys setup for passwordless login. For
Multi-Mesh calculations, the MPI version of FDS can operate over standard 100 Mb/s networks. A giga-
bit (1000 Mb/s) network will further reduce network communication times improving data transfer rates
between instances of MPI FDS running the parallel cases.

2.3 Computer Operating System (OS) and Software Requirements

The goal of making FDS and Smokeview publicly available has been to enable practicing engineers to
perform fairly sophisticated simulations at a reasonable cost. Thus, FDS and Smokeview have been designed
for computers running Microsoft Windows, Mac OS X, and various implementations of Unix/Linux.

MS Windows An installation package is available for Windows operating system. It is not recommended
to run FDS/Smokeview under any version of MS Windows released prior to Windows 7.

Mac OS X Pre-compiled executables are installed into a user selected directory using an installation script.
Mac OS X 10.4.x or better is recommended. You can always download the latest version of FDS source
and compile FDS for other versions of OS X (See Appendix 20 for details).

Linux Pre-compiled executables are installed into a user selected directory using an installation script. If
the pre-compiled FDS executable does not work (usually because of library incompatibilities), the FDS
Fortran source code can be downloaded and compiled (See Appendix 20 for details). If Smokeview
does not work on the Linux workstation, you can use the Windows version to view FDS output.

Unix There are no pre-compiled versions of FDS for the various flavors of Unix. However, the advice for
Linux applies equally as well to Unix.

2.4 Installation Testing

If you are running FDS under a quality assurance plan that requires installation testing, a test procedure is
provided in Appendix B of the FDS Verification Guide [3]. This guide can be obtained from the FDS-SMV
website.
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Chapter 3

Running FDS

Each FDS simulation is controlled by a single text-based input file, typically given a name that helps identify
the particular case, and ending with the file extension .fds. This input file can be written directly with a
text editor or with the help of a third-party graphical user interface (GUI). The simulation is started directly
via the command prompt or through the GUI. The creation of an input file is covered in detail in Part II. This
chapter describes how the simulation is run once the input file is written.

If you are new to FDS and Smokeview, it is strongly suggested that you start with an existing input file,
run it as is, and then make the appropriate changes to the file for your desired scenario. By running a sample
case, you become familiar with the procedure, learn how to use Smokeview, and ensure that your computer
is up to the task before embarking on learning how to create new input files.

Sample input files are included as part of the standard installation. A good case for a first time user is lo-
cated in the subfolder called Fires within the folder called Examples. Find the file called
simple_test.fds and copy it to a folder on your computer that is not within the installation folder.
The reason for doing this is to avoid cluttering up the installation folder with a lot of output files. Follow
the instructions in Section 3.2.1 to run this simple single mesh case. The simulation should only take a few
minutes. Once the simulation is completed, use Smokeview to examine the output. In this way, you will
quickly learn the basics of running and analyzing simulations.

3.1 A Brief Primer on Computer Hardware

The following brief definitions were copied from the Indiana University Knowledge Base, which was devel-
oped with support from (U.S) National Science Foundation grant OCI-1053575.

Cores: Recent developments in computational architecture can lead to confusion concerning what a micro-
processor is. Since the advent of multi-core technology, such as dual-cores and quad-cores, the term
“processor” has been used to describe a logical execution unit or a physical chip. A multi-core chip
may have several cores. With the advent of multi-core technology, the term “processor” has become
context-sensitive, and is largely ambiguous when describing large multi-core systems. Essentially a
core comprises a logical execution unit containing an L1 cache and functional units. Cores are able to
independently execute programs or threads. Supercomputers are listed as having thousands of cores.

Chips: A chip refers to a physical integrated circuit (IC) on a computer. A chip in the context of this
document refers to an execution unit that can be single- or multi-core technology.

Sockets: The socket refers to a physical connector on a computer motherboard that accepts a single physical
chip. Many motherboards can have multiple sockets that can in turn accept multi-core chips.
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Processes: A process is an independent program running on a computer. A process has a full stack of mem-
ory associated for its own use, and does not depend on another process for execution. MPI (Message
Passing Interface) processes are true processes because they can run on independent machines or the
same machine.

Threads: A thread is essentially a process that does not have a full stack of memory associated for it. The
thread is tied to a parent process, and is merely an offshoot of execution. Typically thread processes
must run on the same computer, but can execute simultaneously on separate cores of the same node.
OpenMP parallelism uses threads for child processes.

Hyper-threading: Hyper-threading is an Intel technology that originally preceded multi-core systems, and
was used to make a single core appear logically as multiple cores on the same chip. Intel abandoned
hyper-threading briefly during the advent of multi-core processors but reintroduced the technology in
2008. Since then, Intel has used it extensively to improve the performance of parallel computations in its
multi-core processors. Hyper-threading improves performance by sharing the computational workload
between multiple cores whenever possible, allowing the operating system to schedule more than one
process at a time.

N-ways: Multi-core compute nodes can be described by the number of execution units, or cores. A com-
puter with 8 cores would be described as an 8-way node. This machine can have 8 independent processes
running simultaneously. A 32-core system would be called a 32-way node.

Processors: As explained above, a processor could describe either a single execution core or a single phys-
ical multi-core chip. The context of use will define the meaning of the term.

3.2 Starting an FDS Calculation

FDS can be run on a single computer, using one or more cores, or it can be run on multiple computers.
Starting with FDS version 6.2.0, for each supported operating system (Windows, Linux, Mac OS X) there
is a single executable file called fds (with an .exe file extension on Windows). Previous releases of FDS
contained two executables, one that ran on a single processor and one that ran on multiple processors.
Starting with FDS 6.2.0, these two executables have been combined into one, and it can run either in serial
or parallel mode.

There are two ways that FDS can be run in parallel; that is, exploit multiple cores on a single computer
or multiple processors/cores distributed over multiple computers on a network or compute cluster. The first
way is OpenMP (Open Multi-Processing) [6] which allows a single computer to run a single or multiple
mesh FDS simulation on multiple cores. The use of OpenMP does not require the computational domain to
be broken up into multiple meshes, and it will still work with cases that have multiple meshes defined. The
second way to run FDS in parallel is by way of MPI (Message Passing Interface). Here, the computational
domain must be divided into multiple meshes and typically each mesh is assigned its own process. These
processes can be limited to a single computer, or they can be distributed over a network.

MPI and OpenMP can also be used together. For example, 4 MPI processes can be assigned to 4 different
computers, and each MPI process can be supported by, say, 8 OpenMP threads, assuming each computer
has 8 cores. Most of the speed up is achieved by the MPI. For a reasonably fast network, you can expect 4
MPI processes to speed up the computation time by a factor of about 0.9 times 4. The OpenMP can provide
an extra factor up to about 2, regardless of the number of cores used beyond about 4.
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3.2.1 Single or Multiple Mesh Simulation with OpenMP Parallel Processing

If your simulation involves only one mesh, you can only run it on one computer, but you can exploit its
multiple processors or cores using OpenMP. When you install FDS, it will query your computer to determine
the number of available cores. By default, FDS will use approximately half of the available cores1 on a
single computer. This is done for two reasons: (1) so as not to take over your entire machine when you run a
simulation, and (2) because using all cores for a single simulation may not minimize the run time. OpenMP
works best when exploiting multiple (logical) cores associated with a single (physical) processor or “socket”.
For example, if your computer has two processors, each with 4 cores, it may not be worthwhile to use all 8
cores in an OpenMP simulation. You need to experiment with your own machine to determine the strategy
that is best for you. To change the number of cores that are available for a given FDS simulation, you can
set an environment variable called OMP_NUM_THREADS. The way to do this depends on the operating system
and will be explained below.

When the job is started, FDS will print the number of cores that will be used for that job. Note that
this setting only applies until you log out or restart your machine. To set the default value of available cores
upon startup, the OMP_NUM_THREADS environment variable can also be set in the startup configuration
scripts on the machine. Refer to the documentation for your operating system for more information on how
to configure environment variables upon startup.

To confirm the speedup for the OpenMP version of the code, a series of test cases are run for two
problem sizes (643 and 1283) varying the number of OpenMP threads. The setup is a simple channel
flow carrying two extra species to mimic the scalar transport performed in typical fire problems (see the
Timing_Benchmarks/openmp_test series in the FDS verification suite). The results are shown in
Fig. 3.1. Generally, users can expect a factor of 2 speedup using 4 cores (default setting).
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Figure 3.1: Benchmark timing comparison for the OpenMP test cases. The computer that ran these jobs has
2 (physical) sockets, and each socket has 4 (logical) cores. This explains the decrease in efficiency beyond
4 OpenMP threads.

Details of how to run the simulation are included below for the different operating systems are as fol-
lows:

1To determine the number of cores used by OpenMP, just type fds at the command prompt.
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MS Windows

Open up a Command Prompt window (click Start, then Run, then type “cmd”), and change directories (“cd”)
to where the input file for the case is located. Decide how many cores you want to devote to the simulation.
For example, if you have 4 cores available, type the following at the command prompt:

set OMP_NUM_THREADS=4

Then run the simulation by typing:

fds job_name.fds

The progress of the simulation is indicated by diagnostic output that is written out onto the screen. Detailed
diagnostic information is automatically written to a file job_name.out. Screen output can be redirected to
a file via the alternative command:

fds job_name.fds > job_name.err

Note that it is also possible to associate the .fds extension with the FDS executable directly, thereby making
FDS run by double-clicking on the input file. Be careful not to accidentally double-click on the input file
when trying to edit it. This action will cause previously generated output files to be over-written.

Mac OS X, Unix, Linux

The installer for Mac OS X, Unix, and Linux versions of FDS sets the PATH variable allowing one to invoke
FDS without a full path reference to the executable. To specify 4 OpenMP threads on a Mac OS X or Linux
computer running a Bash shell, type the following at the command prompt:

export OMP_NUM_THREADS=4

To run FDS from the command line type:

fds job_name.fds

The input parameters are read from the file job_name.fds, and error statements and other diagnostics are
written out to the screen. To run the job in the background:

fds job_name.fds >& job_name.err &

Note that in the latter case, the screen output is stored in the file job_name.err and the detailed diagnostics
are saved automatically in a file job_name.out. It is preferable to run jobs in the background so as to free
the console for other uses. To see output while an FDS job is running type:

tail -f job_name.err

or

tail -f job_name.out
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3.2.2 Multiple Mesh Simulation with MPI Parallel Processing

FDS uses MPI (Message-Passing Interface) [7] to allow multiple computers, or multiple cores on one com-
puter, to run a single multi-mesh FDS job. The main idea is that you must break up the FDS domain into
multiple meshes, and then the flow field in each mesh is computed as a different process. Note the subtle
difference between these terms – a process does not have the same meaning as a processor. The process
can be thought of as a “task” that you would see in the Windows Task Manager or by executing the “top”
command on a Linux/Unix machine. The processor refers to the computer hardware. A single processor
may run multiple processes, for example. The computation on a given FDS mesh is thought of as an indi-
vidual process, and MPI handles the transfer of information between these processes. Usually, each mesh
is assigned its own process in an MPI calculation, although it is also possible to assign multiple meshes
to a single process. In this way, large meshes can be computed on dedicated processors, while smaller
meshes can be clustered together in a single process running on a single processor, without the need for
MPI message passing between themselves.

Also note that FDS refers to its meshes by the numbers 1, 2, 3, and so on, whereas MPI refers to its
processes by the numbers 0, 1, 2, and so on. Thus, Mesh 1 is assigned to Process 0; Mesh 2 to Process 1,
and so on. You do not explicitly number the meshes or the processes yourself, but error statements from
FDS or from MPI might refer to the meshes or processes by number. As an example, if a FDS case with five
meshes, the first printout (usually to the screen unless otherwise directed) is:

Mesh 1 is assigned to MPI Process 0
Mesh 2 is assigned to MPI Process 1
Mesh 3 is assigned to MPI Process 2
Mesh 4 is assigned to MPI Process 3
Mesh 5 is assigned to MPI Process 4

This means that 5 MPI processes (numbered 0 to 4) have started and that each mesh is being handled by its
own process. The processes may be on the same or different computers. Each computer has its own memory
(RAM), but each individual MPI process has its own independent memory, even if the processes are on the
same computer.

There are different implementations of MPI, much like there are different Fortran and C compilers. Each
implementation is essentially a library of subroutines called from FDS that transfer data from one process to
another across a fast network. The format of the subroutine calls has been widely accepted in the community,
allowing different vendors and organizations the freedom to develop better software while working within
an open framework. For Mac OS X and Linux, we use Open MPI, an open source implementation that
is developed and maintained by a consortium of academic, research, and industry partners (www.open-
mpi.org). For Windows, we use Intel MPI 2.

Intel MPI for Windows

The files needed to run an MPI calculation across a Windows domain network are bundled in with the FDS
download. There is no need to install Intel MPI or its redistributable libraries. The following procedure is
intended for a Windows domain network; that is, a network where user accounts are centrally managed such
that any user can log in to any machine using the same credentials.

To run the MPI version of FDS, you need to have administrator privileges on the machine that launches
the job, but not necessarily on the machines that run the job. We have designed the FDS installation script
to set up the necessary firewall exceptions and system environment variables automatically so that you need

2Prior to FDS version 6.1.2, the Windows version of FDS used MPICH, a free implementation of MPI developed by Argonne
National Laboratory. The MPICH developers have announced that they are no longer supporting the Windows version.
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only install FDS as you normally would to make this work. You do not have to download and install the
MPI software separately. Everything you need is in the FDS installation package.

First, uninstall the FDS-SMV package on all of the machines you plan to use. The new version will
overwrite all existing versions unless they are moved or renamed.

If you wish to run FDS on more than one core on a single machine, then type the following command:

mpiexec -n 4 fds job_name.fds

where 4 indicates the number of processes that will be created. Note that as a default each process will
use 4 OpenMP threads. It is advisable to set the environmental variable OMP_NUM_THREADS so that the
total number of threads (n × OMP_NUM_THREADS) is less than or equal to the total number of cores on the
machine

If you wish to run FDS on more than one machine, the following steps should be taken:

1. Open up a command prompt by right-clicking on the command prompt icon and choosing “Run as
administrator”. Type the following command:

mpiexec -hosts 2 <my_machine> 1 <other_machine> 1 test_mpi

If this command returns a “Hello World” message from your machine and the other machine on your
network, proceed to the next step. If this command fails, check that you can “see” the other machine by
pinging it, and check that the other machine can “see” your machine as well.

2. Share (with both read and write privilege) a working directory on your machine. Do not put this di-
rectory within the Program Files path. Share the working directory with everybody so that all other
machines can see it. Note how this directory is defined on the other machines. Sometimes it is
\\<my_machine>\<my_shared_directory>\ and sometimes it is defined via the numerical IP ad-
dress, like \\129.6.129.87\<my_shared_directory>\. The definition depends on the way your
domain name server (DNS) works. In any case, do not leave blank spaces within any directory or file
names. We have found that blanks create all sorts of trouble. Unless you are a DOS/Windows expert,
avoid them.

3. Within the command prompt, cd to the working directory. Find or create within the working directory
a relatively small, simple, two mesh FDS input file. At the command prompt, type:

mpiexec -hosts 2 m1 1 m2 1 -wdir \\...\... fds job_name.fds

where m1 and m2 are the names of two computers on your network.

4. If successful, you should see the usual FDS printout indicating the processes being assigned to the
machines. If unsuccessful, try running the case on your own machine:

mpiexec -hosts 1 m1 2 -wdir \\...\... fds job_name.fds

If this is not successful, check with your network administrator or monitor the FDS help forums for
advice.

Open MPI for Linux and Mac OS X

The release versions of FDS for Linux and Mac OSX are built with Open MPI, an open source MPI imple-
mentation that is developed and maintained by a consortium of academic, research, and industry partners.
With Open MPI, FDS is run using the command:

mpirun -np 5 fds -hostfile my_hosts.txt job_name.fds
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where the 5 indicates that 5 processes are to be used. In this case, the executable fds is located in
the working directory, but you can also provide the full path name to the installation directory. The file
my_hosts.txt might look like this:

comp1 slots=2
comp2 slots=1
comp3 slots=2

where slots indicate the number of available cores on that computer.
To make the process run in the background, use the command:

mpirun ... >& job_name.err &

The file job_name.err contains what is normally printed out to the screen.

3.2.3 Using MPI and OpenMP Together

Because it more efficiently divides the computation, MPI is the better choice for multiple mesh simulations.
However, it is possible to combine MPI and OpenMP in the same simulation. If you have multiple computers
at your disposal, and each computer has multiple cores, you can assign one MPI process to each computer,
and use multiple cores on each computer to speed up the processing of a given mesh using OpenMP. For
example, on a Windows Domain Network, if you have two computers that are available and each computer
has four cores, you can run a two mesh simulation as follows:

mpiexec -hosts 2 m1 1 m2 1 -wdir \\...\... -env OMP_NUM_THREADS 4 fds job\_name.fds

The use of OpenMP in this instance will probably speed the calculation by a factor of 2, but now you will be
using 8 cores rather than 2. It might be better to divide the computational domain into 8 meshes and simply
use MPI to process them. This all depends on your particular OS, hardware, network traffic, and so on. You
should choose a good test case and try different meshing and parallel processing strategies to see what is
best for you.

3.2.4 Efficiency of an MPI Calculation

At the end of a calculation, FDS prints out a file called CHID_cpu.csv that records the amount of CPU time
that each MPI process spends in the major routines. For example, the column header VELO stands for all the
subroutines related to computing the flow velocity; MASS stands for all the subroutines related to computing
the species mass fractions and density. The column header MAIN represents all of the CPU time that is not
explicitly accounted for; that is, time spend in the main control loop. Ideally, this ought to be a few percent
of the overall CPU time usage.

There are two basic approaches to assessing the efficiency or scalability of an MPI (parallel) computa-
tion. The first is known as “weak scaling,” in which the amount of work done by each MPI process stays
the same and additional processes are added to solve a larger problem. For example, if you are simulating
the flow of air over a patch of terrain, and you keep adding more and more meshes of the same physical and
numerical dimension, assigning each new mesh to its own MPI process, so as to simulate a larger and larger
patch of terrain, then you would expect that the overall time of the simulation would not increase signifi-
cantly with each additional mesh. The efficiency of such a calculation is given by the following expression:

Ew =
t1
tN

(3.1)
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where t1 is the CPU time for the case with 1 mesh (MPI process), and tN is the CPU time for the case with
N meshes (MPI processes). The left hand plot of Fig. 3.2 shows the results of a weak scaling study of FDS.
Meshes with dimension 50 by 50 by 50 are lined up side by side, ranging from 1 to 288 meshes. Ideally, the
CPU time ought to be about the same for all cases, because each MPI process is doing the same amount of
work. Only mesh to mesh communication should lead to inefficiencies. However, notice in the figure that
the efficiency of the 1, 2, 4, and 8 mesh cases is greater than those with more MPI processes. The reason
for this is that on most compute clusters, each node has multiple cores, and typically jobs run faster when a
node is less than completely full. These test cases were run at NIST, where there is a compute cluster with
8 cores per node, and one with 12 cores per node.

The second way to assess MPI efficiency is known as “strong scaling.” Here, you simulate a given
scenario on a single mesh, and then you divide the mesh so that the cell size and the overall number of cells
does not change. Ideally, if you divide a given mesh into two and run the case with two MPI processes
instead of one, you would expect your computation time to decrease by a factor of two. But as you increase
the number of MPI processes, you increase the amount of communication required among the processes.
You also increase the overall number of boundary cells to compute, even though the overall number of gas
phase cells remains the same. The efficiency of such a set of calculations is given by:

Es =
t1

N tN
(3.2)

In the strong study demonstrated here, a single mesh of dimension 180 by 160 by 80 is divided into a range
of smaller meshes, with the smallest partitioning being 288 meshes of dimension 20 by 20 by 20. The
resulting decrease in the CPU time of the entire calculation and the major subroutines is shown in the right
hand plot of Fig. 3.2. Ideally, the CPU time should be inversely proportional to the number of meshes (MPI
processes); that is, the relative CPU times ought to follow the black dotted lines. The one notable exception
to this rule is for “COMM” or COMMunications. This curve represents the time spent in communicating
information across the network.
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Figure 3.2: Example of a weak (left) and strong (right) scaling study.

3.2.5 Running Very Large Jobs

Most FDS simulations reported in the literature use one to several dozen meshes, and MPI is the method of
choice to parallelize these jobs. Usually the meshes are mapped to MPI processes in a one to one manner
and the meshes contain a comparable number of grid cells. However, it is possible to run FDS jobs that
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involve thousands of meshes. In 2016, the FDS developers at NIST were given access to the Oak Ridge
Leadership Computing Facility at Oak Ridge National Laboratory in Tennessee. The facility provides users
access to compute clusters with very large numbers of processors connected via a high speed network. FDS
simulations were performed using up to approximately 10,000 MPI processes. If you have access to facilities
such as this one, here are a few pointers:

1. Use MPI only. OpenMP will probably not speed up the run time appreciably, and it will consume cores
that could be put to better use running more MPI processes.

2. For jobs using thousands of meshes/processes, add the parameter SHARED_FILE_SYSTEM=.FALSE.
to the MISC line. This directs FDS to break up the Smokeview (.smv) file according to MPI process.
This will greatly speed up the preliminary part of the simulation because the Smokeview file is writ-
ten serially, not in parallel. For a modest number of meshes, this serial write is not a problem, but for
thousands of meshes, the initialization routines can take hours. When the job completes, you can recon-
struct the Smokeview file by appending the numbered files, CHID_n.smv, to the main Smokeview file,
CHID.smv.

3. Set DT_CPU to some convenient time interval on the DUMP line. This parameter directs FDS to periodi-
cally write out a file (CHID_cpu.csv) that records the wall clock time that each MPI process consumes
in the major subroutines. This can help you determine if any of the MPI processes spend an inordinate
amount of time idling.

4. Run your job for a short amount of time to estimate the time required for the full job. Most large compute
clusters will limit you to a certain amount of wall clock time, after which your job is simply stopped. If
you have to use the restart feature in FDS, practice first with a short job to make sure that the job can be
continued properly.

5. Do a strong scaling study for your particular case. That is, run the job a fixed number of time steps with
the least number of meshes that can fit within the machine’s memory. Then divide the mesh by factors
of 2, 4, or 8 until you reach a point where the increased number of meshes/processes does not provide a
significant speed up.

3.3 Monitoring Progress

Diagnostics for a given calculation are written into a file called CHID.out. The current simulation time and
time step is written here, so you can see how far along the program has progressed. At any time during a
calculation, Smokeview can be run and the progress can be checked visually.

By default, the diagnostics in the CHID.out file are verbose. When running large MPI jobs it may be
advantageous to quiet this output, which is all written by MPI process 0. To do this, add

&DUMP SUPPRESS_DIAGNOSTICS=.TRUE. /

Be aware the output file will not monitor mesh boundary velocity errors in this case; it will echo only
the simulation time and time step. You could still output a BNDF of QUANTITY=’VELOCITY_ERROR’, if
necessary.

To stop a calculation before its scheduled time, either kill the process, or preferably create a file in the
same directory as the output files called CHID.stop. The existence of this file stops the program gracefully,
causing it to dump out the latest flow variables for viewing in Smokeview.

Since calculations can be hours or days long, there is a restart feature in FDS. Details of how to use this
feature are given in Section 6.4.3. Briefly, specify at the beginning of calculation how often a “restart” file
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should be saved. Should something happen to disrupt the calculation, like a power outage, the calculation
can be restarted from the time the last restart file was saved.

It is also possible to control the stop time and the dumping of restart files by using control functions as
described in Section 16.5.
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Chapter 4

User Support

It is not unusual over the course of a project to run into various problems, some related to FDS, some related
to your computer. FDS is an CPU and memory intensive calculation that can push your computer’s processor
and memory to its limits. In fact, there are no hardwired bounds within FDS that prevent you from starting
a calculation that is too large for your hardware. Even if your machine has adequate memory (RAM), you
can still easily set up calculations that can require weeks or months to complete. It is difficult to predict at
the start of a simulation just how long and how much memory will be required. Learn how to monitor the
resource usage of your computer. Start with small calculations and build your way up.

Although many features in FDS are fairly mature, there are many that are not. FDS is used for practical
engineering applications, but also for research in fire and combustion. As you become more familiar with the
software, you will inevitably run into areas that are of current research interest. Indeed, burning a roomful
of ordinary furniture is one of the most challenging applications of the model. So be patient, and learn to
dissect a given scenario into its constitutive parts. For example, do not attempt to simulate a fire spreading
through an entire floor of a building unless you have simulated the burning of the various combustibles with
relatively small calculations.

Along with the FDS User’s Guide, there are resources available on the Internet. These resources include
an “Issue Tracker” for reporting bugs and requesting new features, a “Discussion Group” for clarifying
questions and discussing more general topics rather than just specific problems, and “Wiki Pages” that
provide supplementary information about FDS-SMV development, third-party tools, and other resources.
Before using these on-line resources, it is important to first try to solve your own problems by performing
simple test calculations or debugging your input file. The next few sections provide a list of error statements
and suggestions on how to solve problems.

4.1 The Version Number

If you encounter problems with FDS, it is crucial that you submit, along with a description of the problem,
the FDS version number. Each release of FDS comes with a version number like 5.2.6, where the first
number is the major release, the second is the minor release, and the third is the maintenance release.
Major releases occur every few years, and as the name implies significantly change the functionality of the
model. Minor releases occur every few months, and may cause minor changes in functionality. Release
notes can help you decide whether the changes should effect the type of applications that you typically do.
Maintenance releases are just bug fixes, and should not affect code functionality. To get the version number,
just type the executable at the command prompt without an input file, and the relevant information will
appear, along with a date of compilation (useful to you) and a so-called Git hash tag (useful to us). The
Git hash tag refers to the GitHub repository number of the source code. It allows us to go back in time and
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recover the exact source code files that were used to build that executable.
Get in the habit of checking the version number of your executable, periodically checking for new

releases which might already have addressed your problem, and telling us what version you are using if you
report a problem.

4.2 Common Error Statements

An FDS calculation may end before the specified time limit. Following is a list of common error statements
and how to diagnose the problems:

Input File Errors: The most common errors in FDS are due to mis-typed input statements. These errors
result in the immediate halting of the program and a statement like, “ERROR: Problem with the HEAD
line.” For these errors, check the line in the input file named in the error statement. Make sure the
parameter names are spelled correctly. Make sure that a / (forward slash) is put at the end of each
namelist entry. Make sure that the right type of information is being provided for each parameter, like
whether one real number is expected, or several integers, or whatever. Make sure there are no non-ASCII
characters being used, as can sometimes happen when text is cut and pasted from other applications or
word-processing software. Make sure zeros are zeros and O’s are O’s. Make sure 1’s are not !’s. Make
sure apostrophes are used to designate character strings. Make sure the text file on a Unix/Linux machine
was not created on a Windows machine, and vice versa. Make sure that all the parameters listed are still
being used – new versions of FDS often drop or change parameters forcing you to re-examine old input
files.

Numerical Instability Errors: It is possible that during an FDS calculation the flow velocity at some loca-
tion in the domain can increase due to numerical error causing the time step size to decrease to a point1

where logic in the code decides that the results are unphysical and stops the calculation with an error
message in the file CHID.out. In these cases, FDS ends by dumping out one final Plot3D file giving
you a hint as to where the error is occurring within the computational domain. Usually, a numerical
instability can be identified by fictitiously large velocity vectors emanating from a small region within
the domain. Common causes of such instabilities are:

• mesh cells that have an aspect ratio larger than 2 to 1

• high speed flow through a small opening

• a sudden change in the heat release rate

• the removal or creation of an obstruction, like the opening or closing of a door

• a high (>100 g/mol) molecular weight fuel molecule that is not in the FDS database, Table 12.1.
In such cases, reduce the molecular weight but maintain the atom ratios.

• long, sealed tunnels, in which pressure fluctuations can cause spurious numerical artifacts. See
Section 6.6 for details.

There are various ways to solve the problem, depending on the situation. Try to diagnose and fix the
problem before reporting it. It is difficult for anyone but the originator of the input file to diagnose the
problem.

1By default, the calculation is stopped when the time step drops below 0.0001 of the initial time step. This factor can be changed
via the TIME line by specifying the DT_LIMITING_RATIO.
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Inadequate Computer Resources: The calculation might be using more RAM than the machine has (you
will see an error message like “ERROR: Memory allocation failed for ZZ in the routine INIT”) , or
the output files could have used up all the available disk space. In these situations, the computer may
or may not produce an intelligible error message. Sometimes the computer is just unresponsive. It is
your responsibility to ensure that the computer has adequate resources to do the calculation. Remember,
there is no limit to how big or how long FDS calculations can be – it depends on the resources of the
computer. For any new simulation, try running the case with a modest-sized mesh, and gradually make
refinements until the computer can no longer handle it. Then back off somewhat on the size of the
calculation so that the computer can comfortably run the case. Trying to run with 90 % to 100 % of
computer resources is risky. In fact, for a typical 32 bit Windows PC with 4 GB RAM, only 2 GB will be
available to FDS, based on user feedback. If you want to run bigger cases, consider buying a computer
with a 64 bit operating system or break up the calculation into multiple meshes and use the MPI version
of FDS. If you are using a Linux/Unix machine, make sure that the stacksize is unlimited, which will
allow FDS to access as much of the RAM as possible. Changing the stacksize limit differs with each
shell type, so it is best to do an on-line search to find out how to ensure that your stacksize is unlimited.

Run-Time Errors: An error occurs either within the computer operating system or the FDS program. An
error message is printed out by the operating system of the computer onto the screen or into the diag-
nostic output file. This message is most often unintelligible to most people, including the programmers,
although occasionally one might get a small clue if there is mention of a specific problem, like “stack
overflow,” “divide by zero,” or “file write error, unit=...” Sometimes the error message simply refers to a
“Segmentation Fault.” These errors may be caused by a bug in FDS, for example if a number is divided
by zero, or an array is used before it is allocated, or any number of other problems. Before reporting
the error to the Issue Tracker, try to systematically simplify the input file until the error goes away. This
process usually brings to light some feature of the calculation responsible for the problem and helps in
the debugging.

File Writing Errors: Occasionally, especially on Windows machines, FDS fails because it is not permitted
to write to a file. A typical error statement reads:

forrtl: severe (47): write to READONLY file, unit 8598, file C:\Users\...\

The unit, in this case 8598, is just a number that FDS has associated with one of the output files. If this
error occurs just after the start of the calculation, you can try adding the phrase
FLUSH_FILE_BUFFERS=.FALSE.

on the DUMP line of the input file (see Section 17.1). This will prevent FDS from attempting to flush
the contents of the internal buffers, something it does to make it possible to view the FDS output in
Smokeview during the FDS simulation. On some Windows machines, you might encounter security
settings that prevent command line programs such as FDS from writing to system folders that contain
program files. In this case, try to rerun the case in a non-system folder (i.e., a location within your home
directory).

Poisson Initialization: Sometimes at the very start of a calculation, an error appears stating that there is a
problem with the “Poisson initialization.” The equation for pressure in FDS is known as the Poisson
equation. The Poisson solver consists of large system of linear equations that must be initialized at the
start of the calculation. Most often, an error in the initialization step is due to a mesh IJK dimension
being less than 4 (except in the case of a two-dimensional calculation). It is also possible that something
is fundamentally wrong with the coordinates of the computational domain. Diagnose the problem by
checking the MESH lines in the input file.
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4.3 Support Requests and Bug Tracking

Because FDS development is on-going, problems will inevitably occur with various routines and features.
The developers need to know if a certain feature is not working, and reporting problems is encouraged.
However, the problem must be clearly identified. The best way to do this is to simplify the input file as
much as possible so that the bug can be diagnosed (i.e., create and submit a minimal working example).
Also, limit the bug reports to those features that clearly do not work. Physical problems such as fires that do
not ignite, flames that do not spread, etc., may be related to the mesh resolution or scenario formulation, and
you need to investigate the problem first before reporting it. If an error message originates from the operating
system as opposed to FDS, first investigate some of the more obvious possibilities, such as memory size,
disk space, etc.

If that does not solve the problem, report the problem with as much information about the error message
and circumstances related to the problem. The input file should be simplified as much as possible so that the
bug occurs early in the calculation. Attach the simplified input file if necessary, following the instructions
provided at the web site. In this way, the developers can quickly run the problematic input file and hopefully
diagnose the problem.

Note: Reports of specific bugs, problems, feature requests, and enhancements should be posted to the
Issue Tracker and not the Discussion Group.
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Part II

Writing an FDS Input File
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Chapter 5

The Basic Structure of an Input File

5.1 Naming the Input File

The operation of FDS is based on a single ASCII1 text file containing parameters organized into namelist2

groups. The input file provides FDS with all of the necessary information to describe the scenario. The
input file is saved with a name such as job_name.fds, where job_name is any character string that helps
to identify the simulation. If this same string is repeated under the HEAD namelist group within the input
file, then all of the output files associated with the calculation will then have this common prefix name.

There should be no blank spaces in the job name. Instead use the underscore character to represent
a space. Using an underscore characters instead of a space also applies to the general practice of naming
directories on your system.

Be aware that FDS will simply over-write the output files of a given case if its assigned name is the
same. This is convenient when developing an input file because you save on disk space. Just be careful not
to overwrite a calculation that you want to keep.

5.2 Namelist Formatting

Parameters are specified within the input file by using namelist formatted records. Each namelist record
begins with the ampersand character, &, followed immediately by the name of the namelist group, then a
comma-delimited list of the input parameters, and finally a forward slash, /. For example, the line

&DUMP NFRAMES=1800, DT_HRR=10., DT_DEVC=10., DT_PROF=30. /

sets various values of parameters contained in the DUMP namelist group. The meanings of these various
parameters will be explained in subsequent chapters. The namelist records can span multiple lines in the
input file, but just be sure to end the record with a slash or else the data will not be understood. Do not add
anything to a namelist line other than the parameters and values appropriate for that group. Otherwise, FDS
will stop immediately upon execution.

Parameters within a namelist record can be separated by either commas, spaces, or line breaks. It is
recommended that you use commas or line breaks, and never use tab stops because they are not explicitly
defined in the namelist data structure. Comments and notes can be written into the file so long as nothing
comes before the ampersand except a space and nothing comes between the ampersand and the slash except
appropriate parameters corresponding to that particular namelist group.

1ASCII – American Standard Code for Information Interchange. There are 256 characters that make up the standard ASCII text.
2A namelist is a Fortran input record.
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The parameters in the input file can be integers, reals, character strings, or logical parameters. A logical
parameter is either .TRUE. or .FALSE. – the periods are a Fortran convention. Character strings that are
listed in this User’s Guide must be copied exactly as written – the code is case sensitive and underscores do
matter. The maximum length of most character input parameters is 60.

Most of the input parameters are simply real or integer scalars, like DT=0.02, but sometimes the in-
puts are multidimensional arrays. For example, when describing a particular solid surface, you need to
express the mass fractions of multiple materials that are to be found in multiple layers. The input array
MATL_MASS_FRACTION(IL,IC) is intended to convey to FDS the mass fraction of component IC of layer
IL. For example, if the mass fraction of the second material of the third layer is 0.5, then write

MATL_MASS_FRACTION(3,2)=0.5

To enter more than one mass fraction, use this notation:

MATL_MASS_FRACTION(1,1:3)=0.5,0.4,0.1

which means that the first three materials of layer 1 have mass fractions of 0.5, 0.4, and 0.1, respectively.
The notation 1:3 means array element 1 through 3, inclusive.

Note that character strings can be enclosed either by single or double quotation marks. Be careful not
to create the input file by pasting text from something other than a simple text editor, in which case the
punctuation marks may not transfer properly into the text file.

Some text file encodings may not work on all systems. If file reading errors occur and no typographical
errors can be found in the input file, try saving the input file using a different encoding. For example, the
text file editor Notepad works fine on a Windows PC, but a file edited in Notepad may not work on Linux or
Mac OS X because of the difference in line endings between Windows and Unix/Linux operating systems.
The editor Wordpad typically works better, but try a simple case first.

5.3 Input File Structure

In general, the namelist records can be entered in any order in the input file, but it is a good idea to organize
them in some systematic way. Typically, general information is listed near the top of the input file, and
detailed information, like obstructions, devices, and so on, are listed below. FDS scans the entire input file
each time it processes a particular namelist group. With some text editors, it has been noticed that the last
line of the file is often not read by FDS because of the presence of an “end of file” character. To ensure that
FDS reads the entire input file, add

&TAIL /

as the last line at the end of the input file. This completes the file from &HEAD to &TAIL. FDS does not even
look for this last line. It just forces the “end of file” character past relevant input.

Another general rule of thumb when writing input files is to only add parameters that make change from
the default value. That way, you can more easily distinguish between what you want and what FDS wants.
Add comments liberally to the file, so long as these comments do not fall within the namelist records.

The general structure of an input file is shown below, with many lines of the original validation input
file3 removed for clarity.

&HEAD CHID='WTC_05', TITLE='WTC Phase 1, Test 5' /

3The actual input file, WTC_05.fds, is part of the FDS Validation Suite
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&MESH IJK=90,36,38, XB=-1.0,8.0,-1.8,1.8,0.0,3.82 /
&TIME T_END=5400. /
&MISC TMPA=20. /
&DUMP NFRAMES=1800, DT_HRR=10., DT_DEVC=10., DT_PROF=30. /

&REAC FUEL = 'N-HEPTANE'
FYI = 'Heptane, C_7 H_16'
C = 7.
H = 16.
CO_YIELD = 0.008
SOOT_YIELD = 0.015 /

&OBST XB= 3.5, 4.5,-1.0, 1.0, 0.0, 0.0, SURF_ID='STEEL FLANGE' / Fire Pan
...
&SURF ID = 'STEEL FLANGE'

COLOR = 'BLACK'
MATL_ID = 'STEEL'
BACKING = 'EXPOSED'
THICKNESS = 0.0063 /

...
&VENT MB='XMIN', SURF_ID='OPEN' /
...
&SLCF PBY=0.0, QUANTITY='TEMPERATURE', VECTOR=.TRUE. /
...
&BNDF QUANTITY='GAUGE HEAT FLUX' /
...
&DEVC XYZ=6.04,0.28,3.65, QUANTITY='VOLUME FRACTION', SPEC_ID='OXYGEN', ID='EO2_FDS' /
...
&TAIL / End of file.

It is recommended that when looking at a new scenario, first select a pre-written input file that resembles
the case, make the necessary changes, then run the case at fairly low mesh resolution to determine if the
geometry is set up correctly. It is best to start off with a relatively simple file that captures the main features
of the problem without getting tied down with too much detail that might mask a fundamental flaw in the
calculation. Initial calculations ought to be meshed coarsely so that the run times are less than an hour and
corrections can easily be made without wasting too much time. As you learn how to write input files, you
will continually run and re-run your case as you add in complexity.

Table 5.1 provides a quick reference to all the namelist parameters and where you can find the reference
to where it is introduced in the document and the table containing all of the keywords for each group.
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Table 5.1: Namelist Group Reference Table

Group Name Namelist Group Description Reference Section Parameter Table
BNDF Boundary File Output 17.5 18.1
CLIP Clipping Parameters 6.7 18.2
CSVF Velocity Input File 6.4.4 18.3
CTRL Control Function Parameters 16.5 18.4
DEVC Device Parameters 16.1 18.5
DUMP Output Parameters 17.1 18.6
HEAD Input File Header 6.1 18.7
HOLE Obstruction Cutout 7.2.6 18.8
HVAC Heating, Vent., Air Cond. 9.2 18.9
INIT Initial Condition 6.5 18.10
ISOF Isosurface File Output 17.6 18.11
MATL Material Property 8.3 18.12
MESH Mesh Parameters 6.3 18.13
MISC Miscellaneous 6.4 18.14
MULT Multiplier Parameters 7.5 18.15
OBST Obstruction 7.2 18.16
PART Lagrangian Particle 15 18.17
PRES Pressure Solver Parameters 6.6 18.18
PROF Profile Output 17.3 18.19
PROP Device Property 16.3 18.20
RADI Radiation 14.1 18.21
RAMP Ramp Profile 11 18.22
REAC Reaction Parameters 13 18.23
SLCF Slice File Output 17.4 18.24
SPEC Species Parameters 12 18.25
SURF Surface Properties 7.1 18.26
TABL Tabulated Particle Data 16.3.1 18.27
TIME Simulation Time 6.2 18.28
TRNX Mesh Stretching 6.3.5 18.29
VENT Vent Parameters 7.3 18.30
ZONE Pressure Zone Parameters 9.3 18.31
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Chapter 6

Setting the Bounds of Time and Space

This chapter describes global input parameters that affect the general scope of the simulation, like the simu-
lation time and the size and extent of the computational domain. Essentially, these parameters establish the
spatial and temporal coordinate systems that are used by all other components of the simulation, which is
why these parameters are usually listed at the top of the input file and why they are described here first.

6.1 Naming the Job: The HEAD Namelist Group (Table 18.7)

The first thing to do when setting up an input file is to give the job a name. The name of the job is important
because often a project involves numerous simulations in which case the names of the individual simulations
should be meaningful and help to organize the project. The namelist group HEAD contains two parameters,
as in this example:

&HEAD CHID='WTC_05', TITLE='WTC Phase 1, Test 5' /

CHID is a string of 30 characters or less used to tag the output files. If, for example, CHID=’WTC_05’, it
is convenient to name the input data file WTC_05.fds so that the input file can be associated with the
output files. No periods or spaces are allowed in CHID because the output files are tagged with suffixes
that are meaningful to certain computer operating systems. If CHID is not specified, then it will be set
to the name of the input file minus everything at and beyond the first period.

TITLE is a string of 60 characters or less that describes the simulation. It is simply a descriptive text that
is passed to various output files.

6.2 Simulation Time: The TIME Namelist Group (Table 18.28)

TIME is the name of a group of parameters that define the time duration of the simulation and the initial time
step used to advance the solution of the discretized equations.

6.2.1 Basics

Usually, only the duration of the simulation is required on this line, via the parameter T_END. The default is
1 s. For example, the following line will instruct FDS to run the simulation for 5400 seconds.

&TIME T_END=5400. /
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If T_END is set to zero, only the set-up work is performed, allowing you to quickly check the geometry in
Smokeview.

If you want the time line to start at a number other than zero, you can use the parameter T_BEGIN
to specify the time written to file for the first time step. This would be useful for matching time lines of
experimental data or video recordings.

Time-based RAMPs are evaluated using the actual time if the RAMP activation time is the same as
T_BEGIN; otherwise, they are evaluated using the time from when the RAMP activates. Therefore, if you
are setting T_BEGIN in order to test a time-based CTRL or DEVC that is ultimately linked to a RAMP, then you
should set T_BEGIN to be slightly less than the time the RAMP will activate. For example if you are testing a
VENT that is to open at 10 s whose SURF_ID uses a RAMP, T_BEGIN should be set slightly less than 10 s.

6.2.2 Special Topic: Controlling the Time Step

The initial time step size can be specified with DT. This parameter is normally set automatically by dividing
the size of a mesh cell by the characteristic velocity of the flow. During the calculation, the time step is
adjusted so that the CFL (Courant, Friedrichs, Lewy) condition is satisfied. The default value of DT is
5(δxδyδ z)

1
3 /
√

gH s, where δx, δy, and δ z are the dimensions of the smallest mesh cell, H is the height of
the computational domain, and g is the acceleration of gravity. Note that by default the time step is never
allowed to increase above its initial value. To allow this to happen, set RESTRICT_TIME_STEP=.FALSE.

If something sudden is to happen right at the start of a simulation, like a sprinkler activation, it is
a good idea to set the initial time step to avoid a numerical instability caused by too large a time step.
Experiment with different values of DT by monitoring the initial time step sizes recorded in the output file
job_name.out.

Finally, if you want to prevent FDS from automatically changing the time step, set LOCK_TIME_STEP
equal to .TRUE. on the TIME line, in which case the specified time step, DT, will not be adjusted. This
parameter is intended for diagnostic purposes only, for example, timing program execution. It can lead to
numerical instabilities if the initial time step is set too high.

6.2.3 Special Topic: Steady-State Applications

Occasionally, there are applications in which only the steady-state solution (in a time-averaged sense) is
desired. However, the time necessary to heat the walls to steady-state can make the cost of the calculation
prohibitive. In these situations, if you specify a TIME_SHRINK_FACTOR of, say, 10, the specific heats of
the various materials is reduced by a factor of 10, speeding up the heating of these materials roughly by 10.
An example of an application where this parameter is handy is a validation experiment where a steady heat
source warms up a compartment to a nearly equilibrium state at which point time-averaged flow quantities
are measured.

Note that when TIME_SHRINK_FACTOR is used a device with QUANTITY=’TIME’ or a device or control
function with a DELAY will have those values adjusted by the value of TIME_SHRINK_FACTOR. For example
if a 10 s DELAY is specified for a CTRL input with a TIME_SHRINK_FACTOR of 10, then FDS will adjust the
DELAY to 1 s.
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6.3 Computational Meshes: The MESH Namelist Group (Table 18.13)

All FDS calculations must be performed within a domain that is made up of rectilinear volumes called
meshes. Each mesh is divided into rectangular cells, the number of which depends on the desired resolution
of the flow dynamics. MESH is the namelist group that defines the computational domain.

6.3.1 Basics

A mesh is a single right parallelepiped, i.e., a box. The coordinate system within a mesh conforms to the
right hand rule. The origin point of a mesh is defined by the first, third and fifth values of the real number
sextuplet, XB, and the opposite corner is defined by the second, fourth and sixth values. For example,

&MESH IJK=10,20,30, XB=0.0,1.0,0.0,2.0,0.0,3.0 /

defines a mesh that spans the volume starting at the origin and extending 1 m in the positive x direction, 2 m
in the positive y direction, and 3 m in the positive z direction. The mesh is subdivided into uniform cells
via the parameter IJK. In this example, the mesh is divided into 10 cm cubes. It is best if the mesh cells
resemble cubes; that is, the length, width and height of the cells ought to be roughly the same. If it is desired
that the mesh cells in a particular direction not be uniform in size, then the namelist groups TRNX, TRNY
and/or TRNZ may be used to alter the uniformity of the mesh (See Section 6.3.5).

Any obstructions or vents that extend beyond the boundary of the mesh are cut off at the boundary. There
is no penalty for defining objects outside of the mesh, and these objects will not appear in Smokeview.

The pressure solver in FDS employs Fast Fourier Transforms (FFTs) in the y and z directions, and this
algorithm works most efficiently if the number of cells in these directions (the J and K of IJK) can be
factored into low primes, like 2, 3, and 5. The number of cells in the x direction (the I in IJK) is not affected
by this restriction because the pressure solver does not use an FFT in the x direction. However, since the
pressure solver uses less than 10 % of the total CPU time, the gains in using low prime dimensions are
usually negligible. Experiment with different mesh dimensions to ensure that those that are ultimately used
do not unduly slow down the calculation.

6.3.2 Two-Dimensional and Axially-Symmetric Calculations

The governing equations solved in FDS are written in terms of a three dimensional Cartesian coordinate
system. However, a two dimensional Cartesian or two dimensional cylindrical (axially-symmetric) calcu-
lation can be performed by setting the J in the IJK triplet to 1 on the MESH line. For axial symmetry,
add CYLINDRICAL=.TRUE. to the MESH line, and the coordinate x is then interpreted as the radial coordi-
nate r. No boundary conditions should be set at the planes y = YMIN=XB(3) or y = YMAX=XB(4), nor at
r = XMIN=XB(1) in an axially-symmetric calculation in which r = XB(1)=0. For better visualizations, the
difference between XB(4) and XB(3) should be small so that the Smokeview rendering appears to be in
2-D. An example of an axially-symmetric helium plume is given in Section 6.4.7.

6.3.3 Multiple Meshes

The term “multiple meshes” means that the computational domain consists of more than one computational
mesh, usually connected although this is not required. If more than one mesh is used, there should be a
MESH line for each. The order in which these lines are entered in the input file matters. In general, the
meshes should be entered from finest to coarsest. FDS assumes that a mesh listed first in the input file has
precedence over a mesh listed second if the two meshes overlap. Meshes can overlap, abut, or not touch
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Figure 6.1: An example of a multiple-mesh geometry.

at all. In the last case, essentially two separate calculations are performed with no communication at all
between them. Obstructions and vents are entered in terms of the overall coordinate system and need not
apply to any one particular mesh. Each mesh checks the coordinates of all the geometric entities and decides
whether or not they are to be included.

To run FDS in parallel using MPI (Message Passing Interface), you must break up the computational
domain into multiple meshes so that the workload can be divided among the computers. In general, it is
better to run multiple mesh cases with the MPI version of FDS if you have the computers available, but be
aware that two computers will not necessarily finish the job in half the time as one. For the MPI version to
work well, there has to be a comparable number of cells in each mesh, or otherwise most of the computers
will sit idle waiting for the one with the largest mesh to finish processing each time step. You can use
multiple meshes even when running the non-MPI version of FDS, in which case one CPU will serially
process each mesh, one by one.

Usually in a MPI calculation, each mesh is assigned its own process, and each process its own processor.
However, it is possible to assign more than one mesh to a single process, and it is possible to assign more
than one process to a single processor. Consider a case that involves six meshes:

&MESH ID='mesh1', IJK=..., XB=..., MPI_PROCESS=0 /
&MESH ID='mesh2', IJK=..., XB=..., MPI_PROCESS=1 /
&MESH ID='mesh3', IJK=..., XB=..., MPI_PROCESS=1 /
&MESH ID='mesh4', IJK=..., XB=..., MPI_PROCESS=2 /
&MESH ID='mesh5', IJK=..., XB=..., MPI_PROCESS=3 /
&MESH ID='mesh6', IJK=..., XB=..., MPI_PROCESS=3 /

The parameter MPI_PROCESS instructs FDS to assign that particular mesh to the given process. In this case,
only four processes are to be started, numbered 0 through 3. Note that the processes need to be invoked in
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ascending order, starting with 0. Why would you do this? Suppose you only have four processors available
for this job. By starting only four processes instead of six, you can save time because ‘mesh2’ and ‘mesh3’
can communicate directly with each other without having to transmit data using MPI calls over the network.
Same goes for ‘mesh5’ and ‘mesh6’. In essence, it is as if these mesh pairs are neighbors and need not send
mail to each other via the postal system. The letters can just be walked next door.

Additionally to the mesh assignment to individual MPI processes, the number of OpenMP threads for
each MPI process may be specified. The parameter N_THREADS instructs FDS to set this number of threads
and must be consistent for all meshes on the same MPI process, but may vary between them:

&MESH ID='mesh1', IJK=..., XB=..., MPI_PROCESS=0 /
&MESH ID='mesh2', IJK=..., XB=..., MPI_PROCESS=1, N_THREADS=2 /
&MESH ID='mesh3', IJK=..., XB=..., MPI_PROCESS=1, N_THREADS=2 /
&MESH ID='mesh4', IJK=..., XB=..., MPI_PROCESS=2, N_THREADS=4 /
&MESH ID='mesh5', IJK=..., XB=..., MPI_PROCESS=3 /
&MESH ID='mesh6', IJK=..., XB=..., MPI_PROCESS=3 /

Notes: An unspecified value will result in the default number of threads (see 3.2.1) on the MPI process.
Some cluster systems do not support an heterogenous distribution of resources, here computational cores,
per MPI process. Therefore, the number of OpenMP threads may change, but not the amount of cores
assigned to the MPI process.

For cases involving many meshes, you might want to assign them colors using either the character string
COLOR or the integer triplet RGB. You may also want to consider using the multiplying feature to easily create
a 3-D array of meshes. See Section 7.5 for details.

Some parallel computing environments do not have a centralized file system, in which case FDS must
write the output files for each process to a separate disk. If your computing cluster does not have a
SHARED_FILE_SYSTEM, then set this parameter to .FALSE. on the MISC line. This parameter is also
handy for MPI jobs involving hundreds or thousands of processes, in which case writing a single Smoke-
view file is time-consuming. When SHARED_FILE_SYSTEM is set to .FALSE., the file that Smokeview
reads is broken into pieces, one for each MPI process. By doing this, you avoid serially writing to the
Smokeview file. One other useful parameter for larger MPI jobs is called VERBOSE on the MISC line. This
logical parameter suppresses information that is printed to the diagnostic output files. By default, its value
is .TRUE. for MPI jobs involving 50 or less processes, and .FALSE. for larger jobs.

6.3.4 Mesh Alignment

Whether the calculation is to be run using MPI or not, the rules of prescribing multiple meshes are similar,
with some issues to keep in mind. The most important rule of mesh alignment is that abutting cells ought
to have the same cross sectional area, or integral ratios, as shown in Fig. 6.2. The following rules of thumb
should also be followed when setting up a multiple mesh calculation:

• Avoid putting mesh boundaries where critical action is expected, especially fire. Sometimes fire spread
from mesh to mesh cannot be avoided, but if at all possible try to keep mesh interfaces relatively free of
complicated phenomena since the exchange of information across mesh boundaries is not yet as accurate
as cell to cell exchanges within one mesh.

• In general, there is little advantage to overlapping meshes because information is only exchanged at
exterior boundaries. This means that a mesh that is completely embedded within another receives infor-
mation at its exterior boundary, but the larger mesh receives no information from the mesh embedded
within. Essentially, the larger, usually coarser, mesh is doing its own simulation of the scenario and
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This is the ideal kind of mesh to
mesh alignment.

This is allowed so long as there
are an integral number of fine
cells abutting each coarse cell.

This is allowed, but of ques-
tionable value.

This is not allowed.

Figure 6.2: Rules governing the alignment of meshes.
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is not affected by the smaller, usually finer, mesh embedded within it. Details within the fine mesh,
especially related to fire growth and spread, may not be picked up by the coarse mesh. In such cases,
it is preferable to isolate the detailed fire behavior within one mesh, and position coarser meshes at the
exterior boundary of the fine mesh. Then the fine and coarse meshes mutually exchange information.

• Be careful when using the shortcut convention of declaring an entire face of the domain to be an OPEN

vent. Every mesh takes on this attribute. See Section 7.3 for more details.

• If a planar obstruction is close to where two meshes abut, make sure that each mesh “sees” the obstruc-
tion. If the obstruction is even a millimeter outside of one of the meshes, that mesh does not account for
it, in which case information is not transferred properly between meshes.

Accuracy of the Multiple Mesh Calculation

Experiment with different mesh configurations using relatively coarse mesh cells to ensure that information
is being transferred properly from mesh to mesh. There are two issues of concern. First, does it appear that
the flow is being badly affected by the mesh boundary? If so, try to move the mesh boundaries away from
areas of activity. Second, is there too much of a jump in cell size from one mesh to another? If so, consider
whether the loss of information moving from a fine to a coarse mesh is tolerable.

6.3.5 Mesh Stretching: The TRNX, TRNY and TRNZ Namelist Groups (Table 18.29)

By default the mesh cells that fill the computational domain are uniform in size. However, it is possible
to specify that the cells be non-uniform in one or two of the three coordinate directions. For a given co-
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Figure 6.3: Piecewise-linear mesh transformation.
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Figure 6.4: Polynomial mesh transformation.

ordinate direction, x, y or z, a function can be prescribed that transforms the uniformly-spaced mesh to a
non-uniformly spaced mesh. Be careful with mesh transformations! If you shrink cells in one region you
must stretch cells somewhere else. When one or two coordinate directions are transformed, the aspect ratio
of the mesh cells in the 3D mesh will vary. To be on the safe side, transformations that alter the aspect ratio
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of cells beyond 2 or 3 should be avoided. Keep in mind that the large eddy simulation technique is based
on the assumption that the numerical mesh should be fine enough to allow the formation of eddies that are
responsible for the mixing. In general, eddy formation is limited by the largest dimension of a mesh cell,
thus shrinking the mesh resolution in one or two directions may not necessarily lead to a better simulation
if the third dimension is large. Transformations, in general, reduce the efficiency of the computation, with
two coordinate transformations impairing efficiency more than a transformation in one coordinate direction.
Experiment with different meshing strategies to see how much of a penalty you will pay.

Here is an example of how to do a mesh transformation. Suppose your mesh is defined

&MESH IJK=15,10,20, XB=0.0,1.5,1.2,2.2,3.2,5.2 /

and you want to alter the uniform spacing in the x direction. First, refer to the figures above. You need
to define a function x = f (ξ ) that maps the uniformly-spaced Computational Coordinate (CC) 0≤ ξ ≤ 1.5
to the Physical Coordinate (PC) 0 ≤ x ≤ 1.5. The function has three mandatory constraints: it must be
monotonic (always increasing), it must map ξ = 0 to x = 0, and it must map ξ = 1.5 to x = 1.5. The default
transformation function is f (ξ ) = ξ for a uniform mesh, but you need not do anything in this case.

Two types of transformation functions are allowed. The first, and simplest, is a piecewise-linear func-
tion. Figure 6.3 gives an example of a piecewise-linear transformation. The graph indicates how 15 uni-
formly spaced mesh cells along the horizontal axis are transformed into 15 non-uniformly spaced cells along
the vertical axis. In this case, the function is made up of straight line segments connecting points (CC,PC),
in increasing order, as specified by the following lines in the input file:

&TRNX CC=0.30, PC=0.50, MESH_NUMBER=2 /
&TRNX CC=1.20, PC=1.00, MESH_NUMBER=2 /

The integer MESH_NUMBER indicates which mesh to apply the transformation. If you want the transforma-
tion to be applied to all meshes, set MESH_NUMBER to 0. The parameter CC refers to the Computational
Coordinate, ξ , located on the horizontal axis; PC is the Physical Coordinate, x, located on the vertical axis.
The slopes of the line segments in the plot indicate whether the mesh is being stretched (slopes greater
than 1) or shrunk (slopes less than 1). The tricky part about this process is that you usually have a desired
shrinking/stretching strategy for the Physical Coordinate on the vertical axis, and must work backwards to
determine what the corresponding points should be for the Computational Coordinate on the horizontal axis.
Note that the above transformation is applied to the second mesh in a multiple mesh job.

The second type of transformation is a polynomial function whose constraints are of the form

dn f (CC)
dξ n = PC

Figure 6.4 gives an example of a polynomial transformation, for which the parameters are specified (assum-
ing that this is the third mesh):

&TRNX IDERIV=0, CC=0.75, PC=0.75, MESH_NUMBER=3 /
&TRNX IDERIV=1, CC=0.75, PC=0.50, MESH_NUMBER=3 /

which correspond to the constraints f (0.75) = 0.75 and d f
dξ (0.75) = 0.5, or, in words, the function maps 0.75

into 0.75 and the slope of the function at ξ = 0.75 is 0.5 . The transform function must also pass through
the points (0,0) and (1.5,1.5), meaning that FDS must compute the coefficients for the cubic polynomial
f (ξ ) = c0+c1 ξ +c2 ξ 2+c3 ξ 3. More constraints on the function lead to higher order polynomial functions,
so be careful about too many constraints which could lead to non-monotonic functions. The monotonicity
of the function is checked by the program and an error message is produced if it is not monotonic.
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Do not specify either linear transformation points or IDERIV=0 points at coordinate values correspond-
ing to the mesh boundaries. This is done automatically by FDS.

6.3.6 Mesh Resolution

A common question asked by new FDS users is, “What should my grid spacing be?” The answer is not easy
because it depends considerably on what you are trying to accomplish. In general, you should build an FDS
input file using a relatively coarse mesh, and then gradually refine the mesh until you do not see appreciable
differences in your results. This is referred to as a mesh sensitivity study.

For simulations involving buoyant plumes, a measure of how well the flow field is resolved is given by
the non-dimensional expression D∗/δx, where D∗ is a characteristic fire diameter

D∗ =
(

Q̇
ρ∞ cp T∞

√
g

) 2
5

(6.1)

and δx is the nominal size of a mesh cell1. The quantity, Q̇, is the total heat release rate of the fire. If it
changes over time, you should consider the corresponding change in resolution. The quantity D∗/δx can be
thought of as the number of computational cells spanning the characteristic (not necessarily the physical)
diameter of the fire. The more cells spanning the fire, the better the resolution of the calculation. It is better
to assess the quality of the mesh in terms of this non-dimensional parameter, rather than an absolute mesh
cell size. For example, a cell size of 10 cm may be “adequate,” in some sense, for evaluating the spread
of smoke and heat through a building from a sizable fire, but may not be appropriate to study a very small,
smoldering source.

The FDS Validation Guide [4] contains a table of the values of D∗/δx used in the simulation of the vali-
dation experiments. The table is near the end of the chapter that describes all the experiments. These values
range over two orders of magnitude and were chosen based on a grid resolution study and the particular
attributes of the given fire scenario. It would be inappropriate to take any of these values as an “acceptable”
minimum.

There are a number of special output quantities that provide local measures of grid resolution. See
Section 17.10.21 for details.

1The characteristic fire diameter is related to the characteristic fire size via the relation Q∗ = (D∗/D)5/2, where D is the physical
diameter of the fire.
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6.4 Miscellaneous Parameters: The MISC Namelist Group (Table 18.14)

MISC is the namelist group of global miscellaneous input parameters. It contains parameters that do not
logically fit into any other category.

6.4.1 Basics

Only one MISC line should be entered in the data file. For example, the input line

&MISC TMPA=25. /

sets the ambient temperature at 25 ◦C. The MISC parameters vary in scope and degree of importance. Here
is a partial list of MISCellaneous parameters. Others are described where necessary throughout this guide.

DNS A logical parameter that, if .TRUE., directs FDS to perform a Direct Numerical Simulation, as opposed
to the default Large Eddy Simulation (LES). This feature is appropriate only for simulations that use
mesh cells that are on the order of a millimeter or less in size, or for diagnostic purposes.

GVEC The 3 components of gravity, in m/s2. The default is GVEC=0,0,-9.81.

NOISE FDS initializes the flow field with a very small amount of “noise” to prevent the development of
a perfectly symmetric flow when the boundary and initial conditions are perfectly symmetric. To turn
this off, set NOISE=.FALSE. To control the amount of noise, set NOISE_VELOCITY. Its default value
is 0.005 m/s.

OVERWRITE If .FALSE. FDS checks for the existence of CHID.out and stops execution if it exists.

P_INF Background pressure (at the ground) in Pa. The default is 101325 Pa.

TMPA Ambient temperature, the temperature of everything at the start of the simulation. The default is
20 ◦C.

6.4.2 Special Topic: Specifying a Force Field

Similar to the MEAN_FORCING feature, you may specify a constant and uniform force per unit volume by
setting FORCE_VECTOR(1:3) on MISC. This is useful, for example, in specifying a mean pressure drop in
a duct. In the absence of other forces, the force vector Fi affects the momentum equation by

∂ui

∂ t
=−Fi/ρ (6.2)

This feature is typically used together with periodic boundaries. To specify a mean pressure drop of 0.01
Pa/m in the x direction for a periodic duct, for example, use

&MISC FORCE_VECTOR(1)=0.01 /
&VENT MB='XMIN', SURF_ID='PERIODIC' /
&VENT MB='XMAX', SURF_ID='PERIODIC' /

You may apply a time ramp to FORCE_VECTOR(1), for example, via RAMP_FVX_T on MISC.
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6.4.3 Special Topic: Stopping and Restarting Calculations

An important MISC parameter is called RESTART. Normally, a simulation consists of a sequence of events
starting from ambient conditions. However, there are occasions when you might want to stop a calculation,
make a few limited adjustments, and then restart the calculation from that point in time. To do this, first
bring the calculation to a halt gracefully by creating a file called CHID.stop in the directory where the
output files are located. Remember that FDS is case-sensitive. The file name must be exactly the same as
the CHID and ‘stop’ should be lower case. FDS checks for the existence of this file at each time step, and
if it finds it, gracefully shuts down the calculation after first creating a final Plot3D file and a file (or files in
the case of a multiple mesh job) called CHID.restart (or CHID_nn.restart). To restart a job, the file(s)
CHID.restart should exist in the working directory, and the phrase RESTART=.TRUE. needs to be added
to the MISC line of the input data file. For example, suppose that the job whose CHID is “plume” is halted by
creating a dummy file called plume.stop in the directory where all the output files are being created. To
restart this job from where it left off, add RESTART=.TRUE. to the MISC line of the input file plume.fds,
or whatever you have chosen to name the input file. The existence of a restart file with the same CHID as
the original job tells FDS to continue saving the new data in the same files as the old2. If RESTART_CHID
is also specified on the MISC line, then FDS will look for old output files tagged with this string instead of
using the specified CHID on the HEAD line. In this case, the new output files will be tagged with CHID, and
the old output files will not be altered. When running the restarted job, the diagnostic output of the restarted
job is appended to output files from the original job.

There may be times when you want to save restart files periodically during a run as insurance against
power outages or system crashes. If this is the case, at the start of the original run set DT_RESTART=50. on
the DUMP line to save restart files every 50 s, for example. The default for DT_RESTART is 1000000, meaning
no restart files are created unless you gracefully stop a job by creating a dummy file called CHID.stop. It
is also possible to use the new control function feature (see Section 16.5) to stop a calculation or dump a
restart file when the computation reaches some measurable condition such as a first sprinkler activation.

Between job stops and restarts, major changes cannot be made in the calculation like adding or removing
vents and obstructions. The changes are limited to those parameters that do not instantly alter the existing
flow field. Since the restart capability has been used infrequently by the developers, it should be considered
a fragile construct. Examine the output to ensure that no sudden or unexpected events occur during the stop
and restart.

6.4.4 Special Topic: Initializing a 3D Velocity Field

It may be useful to start a calculation from an established flow field. Usually this can be accomplished
with the normal restart functionality. But in some circumstances restart may be fragile, or you may want
to specify a profile throughout the entire domain. For such situations we have added the ability to read the
velocity field information from a comma-separated value (.csv) file. You have the option of creating the
velocity file using FDS or creating your own. To generate the velocity initialization file with FDS, in the
input file add a DUMP line with a UVW_TIMER (time in seconds). The timer will accept up to 10 values, and
will write velocity files for each mesh and each timer index to the working directory. For example, if you
want to write the simulation velocity field at 10 minutes into the run, add the following:

&DUMP UVW_TIMER(1)=600 /

FDS will then write CHID_uvw_nn.csv for each time index and mesh. The format for this file is
2By default, when a job is restarted, the spreadsheet output files will be appended at the time the job was restarted, not the time

the job was stopped. If you want the output files to be appended without clipping off any existing data, even though some duplicate
output will be left over, then set CLIP_RESTART_FILES to .FALSE. on the DUMP line.
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WRITE(LU_UVW) IMIN,IMAX,JMIN,JMAX,KMIN,KMAX
DO K=KMIN,KMAX
DO J=JMIN,JMAX
DO I=IMIN,IMAX
WRITE(LU_UVW,*) U(I,J,K),',',V(I,J,K),',',W(I,J,K)
ENDDO

ENDDO
ENDDO

You may read in the 3-D velocity field using a CSVF line. For example:

&CSVF UVWFILE='my_velocity_field.csv' /

If multiple meshes are involved, it is assumed that the CSVF lines are provided in the input file in the same
order as the meshes. For two meshes you might have the following:

&CSVF UVWFILE='CHID_t001_m001.csv' /
&CSVF UVWFILE='CHID_t001_m002.csv' /
&MISC PROJECTION=.TRUE. /

It is recommended that you also specify PROJECTION=.TRUE. on MISC if the specified velocity field does
not satisfy the divergence constraint to machine precision on a staggered grid (this may not even be true if an
analytical solution to the Navier-Stokes equations is sampled at the staggered velocity component locations).

6.4.5 Special Topic: Turning off the Flow Field

For certain types of diagnostic tests, it is useful to turn off the velocity field and exercise some other aspect
of the model, like radiation of particle transport. To do this, set FREEZE_VELOCITY=.TRUE. on the MISC
line.

6.4.6 Special Topic: Defying Gravity

By default, gravity points in the negative z direction, or more simply, downward. However, to change the
direction of gravity to model a sloping roof or tunnel, for example, specify the gravity vector on the MISC
line with a triplet of numbers of the form GVEC=0.,0.,-9.81, with units of m/s2. This is the default, but
it can be changed to be any direction.

There are a few special applications where you might want to vary the gravity vector as a function of
time or as a function of the first spatial coordinate, x. For example, on board space craft, small motions can
cause temporal changes in the normally zero level of gravity, an effect known as “g-jitter.” More commonly,
in tunnel fire simulations, it is sometimes convenient to change the direction of gravity to mimic the change
in slope. The slope of the tunnel might change as you travel through it; thus, you can tell FDS where to
redirect gravity. For either a spatially or temporally varying direction and/or magnitude of gravity, do the
following. First, on the MISC line, set the three components of gravity, GVEC, to some “base” state like
GVEC=1.,1.,1., which gives you the flexibility to vary all three components. Next, designate “ramps” for
the individual components, RAMP_GX, RAMP_GY, and RAMP_GZ, all of which are specified on the MISC line.
There is more discussion of RAMPs in Section 11, but for now you can use the following as a simple template
to follow:

&MISC GVEC=1.,0.,1., RAMP_GX='x-ramp', RAMP_GZ='z-ramp' /

&RAMP ID='x-ramp', X= 0., F=0.0 /
&RAMP ID='x-ramp', X= 50., F=0.0 /
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&RAMP ID='x-ramp', X= 51., F=-0.49 /
&RAMP ID='x-ramp', X=100., F=-0.49 /

&RAMP ID='z-ramp', X= 0., F=-9.81 /
&RAMP ID='z-ramp', X= 50., F=-9.81 /
&RAMP ID='z-ramp', X= 51., F=-9.80 /
&RAMP ID='z-ramp', X=100., F=-9.80 /

Note that both the x and z components of gravity are functions of x. FDS has been programmed to only allow
variation in the x coordinate. Note also that F is just a multiplier of the “base” gravity vector components,
given by GVEC. This is why using the number 1 is convenient – it allows you to specify the gravity compo-
nents on the RAMP lines directly. The effect of these lines is to model the first 50 m of a tunnel without a
slope, but the second 50 m with a 5 % slope upwards. Note that the angle from vertical of the gravity vector
due to a 5 % slope is tan−1 0.05 = 2.86◦ and that 0.49 and 9.80 are equal to the magnitude of the gravity
vector, 9.81 m/s2, multiplied by the sine and cosine of 2.86◦, respectively. To check your math, the sum
of the squares of the gravity components ought to equal 9.81. Notice in this case that the y direction has
been left out because there is no y variation in the gravity vector. To vary the direction and/or magnitude of
gravity in time, follow the same procedure but replace the X in the RAMP lines with a T.

6.4.7 Special Topic: The Baroclinic Vorticity

The pressure term in the momentum transport equation solved by FDS is decomposed as follows:

1
ρ

∇p̃ = ∇

(
p̃
ρ

)
− p̃∇

(
1
ρ

)
(6.3)

The pressure term is written like this so that a separable elliptic partial differential equation can be solved
for the “total” pressure, H ≡ |u|2/2+ p̃/ρ , using a direct solver. The second term is calculated based on the
pressure field from the previous time step, a slight approximation necessary to render the pressure equation
separable. This term is sometimes referred to as the baroclinic torque, and it is responsible for generating
vorticity due to the non-alignment of pressure and density gradients. In versions of FDS prior to 6, the in-
clusion of the baroclinic torque term was found to sometimes cause numerical instabilities. If it is suspected
that the term is responsible for numerical problems, it can be removed by setting BAROCLINIC=.FALSE.

on the MISC line. For example, in the simple helium plume test case below, neglecting the baroclinic torque
changes the puffing behavior noticeably. In other applications, however, its effect is less significant. For
further discussion of its effect, see Ref. [8].

Example Case: Flowfields/helium_2d_isothermal

This case demonstrates the use of baroclinic correction for an axially-symmetric helium plume. Note that the
governing equations solved in FDS are written in terms of a three dimensional Cartesian coordinate system.
However, a two dimensional Cartesian or two dimensional cylindrical (axially-symmetric) calculation can
be performed by setting the number of cells in the y direction to 1. An example of an axially-symmetric
helium plume is shown in Fig. 6.5.

6.4.8 Special Topic: Large Eddy Simulation Parameters

By default FDS uses the Deardorff [9, 10] turbulent viscosity,

(µLES/ρ) =Cν∆
√

ksgs (6.4)
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&HEAD CHID='helium_2d_isothermal',TITLE='Axisymmetric Helium Plume' /
&MESH IJK=72,1,144 XB=0.00,0.08,-0.001,0.001,0.00,0.16, CYLINDRICAL=.TRUE. /
&TIME T_END=5.0 /
&MISC DNS=.TRUE. /
&RADI RADIATION=.FALSE. /
&SPEC ID='HELIUM' /
&SURF ID='HELIUM', VEL=-0.673, MASS_FRACTION(1)=1.0, TAU_MF(1)=0.3 /
&VENT MB='XMAX' ,SURF_ID='OPEN' /
&VENT MB='ZMAX' ,SURF_ID='OPEN' /
&OBST XB= 0.0,0.036,-0.001,0.001,0.00,0.02, SURF_IDS='HELIUM','INERT','INERT' /
&DUMP PLOT3D_QUANTITY(1)='PRESSURE',PLOT3D_QUANTITY(5)='HELIUM' /
&SLCF PBY=0.000,QUANTITY='DENSITY', VECTOR=.TRUE. /
&SLCF PBY=0.000,QUANTITY='HELIUM' /
&TAIL /

Figure 6.5: Simulation of a helium plume.

where Cν = 0.1 and the subgrid scale (sgs) kinetic energy is taken from an algebraic relationship based on
scale similarity (see the FDS Technical Reference Guide [1]). The LES filter width is taken as the geometric
mean of the local mesh spacing in each direction, ∆ = (δxδyδ z)(1/3).

Options for the TURBULENCE_MODEL on the MISC line are listed in Table 6.1. Note that the model used
in FDS versions 1-5 is ’CONSTANT SMAGORINSKY’. The thermal conductivity and material diffusivity are
related to the turbulent viscosity by:

kLES =
µLES cp

Prt
; (ρD)LES =

µLES

Sct
(6.5)

The turbulent Prandtl number Prt and the turbulent Schmidt number Sct are assumed to be constant for
a given scenario. Although it is not recommended for most calculations, you can modify Prt = 0.5, and
Sct = 0.5 via the parameters PR, and SC on the MISC line. A more detailed discussion of these parameters
is given in the FDS Technical Reference Guide [1].

Table 6.1: Turbulence model options.

TURBULENCE_MODEL Description Coefficient(s)
’CONSTANT SMAGORINSKY’ Constant coefficient Smagorinsky model [11] C_SMAGORINSKY

’DYNAMIC SMAGORINSKY’ Dynamic Smagorinsky model [12, 13] None
’DEARDORFF’ Deardorff model [9, 10] C_DEARDORFF

’VREMAN’ Vreman’s eddy viscosity model [14] C_VREMAN

’RNG’ Renormalization group eddy viscosity model [15] C_RNG, C_RNG_CUTOFF

6.4.9 Special Topic: Numerical Stability Parameters

FDS uses an explicit time advancement scheme; thus, the time step plays an important role in maintaining
numerical stability and accuracy. Below we examine the constraints on the time step necessary for stability
in the presence of advection, diffusion, and expansion of the velocity and scalar fields. In addition, there are
additional constraints that ensure accuracy of various algorithms.
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The Courant-Friedrichs-Lewy (CFL) Constraint

The well-known CFL constraint given by

CFL = δ t
‖u‖
δx

< 1 (6.6)

places a restriction on the time step due to the advection velocity. The limits for the CFL are set by CFL_MIN
(default 0.8) and CFL_MAX (default 1) on MISC. Physically, the constraint says that a fluid element should not
traverse more than one cell within a time step. For LES, this constraint has the added advantage of keeping
the implicit temporal and spatial filters consistent with each other. In other words, in order to resolve an
eddy of size δx, the time step needs to obey the CFL constraint. If one were to employ an implicit scheme
for purpose of taking time steps say 10 times larger than the CFL limit, the smallest resolvable turbulent
motions would then be roughly 10 times the grid spacing, which would severely limit the benefit of using
LES. In most cases, if you want the simulation to run faster, a better strategy is to coarsen the grid resolution
while keeping the CFL close to 1.

The exact CFL needed to maintain stability depends on the order (as well as other properties) of the
time integration scheme and the choice of velocity norm. Three choices for velocity norm are available in
FDS (set on MISC):

CFL_VELOCITY_NORM=0 (LES default, least restrictive, corresponds to L∞ norm of velocity vector)

‖u‖
δx

= max
(
|u|
δx

,
|v|
δy

,
|w|
δ z

)
(6.7)

CFL_VELOCITY_NORM=1 (DNS default, most restrictive, corresponds to L1 norm of velocity vector)

‖u‖
δx

=
|u|
δx

+
|v|
δy

+
|w|
δ z

(6.8)

CFL_VELOCITY_NORM=2 (L2 norm of velocity vector)

‖u‖
δx

=

√( u
δx

)2
+

(
v

δy

)2

+

(
w
δ z

)2

(6.9)

The Von Neumann Constraint

The Von Neumann constraint is given by

VN≡ δ t max
[

µ
ρ
,Dα

] (
1

δx2 +
1

δy2 +
1

δ z2

)
<

1
2

(6.10)

The Von Neumann stability check is invoked by setting CHECK_VN=.TRUE. on the MISC line (for DNS,
CHECK_VN=.TRUE. by default). The limits for VN may be adjusted using VN_MIN (default 0.4) and VN_MAX
(default 0.5) on MISC. We can understand this constraint in a couple of different ways. First, we could
consider the model for the diffusion velocity of species α in direction i, Vα,iYα = −Dα ∂Yα/∂xi, and we
would then see that VN is simply a CFL constraint due to diffusive transport.

We can also think of VN in terms of a total variation diminishing (TVD) constraint. That is, if we have
variation (curvature) in the scalar field, we do not want to create spurious oscillations that can lead to an
instability by overshooting the smoothing step. Consider the following explicit update of the heat equation
for u in 1-D. Here subscripts indicate grid indices and ν is the diffusivity.

un+1
i = un

i +
δ t ν
δx2 (u

n
i−1−2un

i +un
i+1) (6.11)
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Very simply, notice that if δ t ν/δx2 = 1/2 then un+1
i = (un

i−1 + un
i+1)/2. If the time step is any larger we

overshoot the straight line connecting neighboring cell values. Of course, this restriction is only guaranteed
to be TVD if the u field is “smooth”; otherwise, the neighboring cell values may be shifted in the opposite
direction. Unfortunately, in LES there is no such guarantee and so the VN constraint can be particularly
devilish in generating instabilities. For this reason, some practitioners like to employ implicit methods for
the diffusive terms.

Realizable Mass Density Constraint

In an explicit Euler update of the continuity equation, if the time increment is too large the computational
cell may be totally drained of mass, which, of course, is not physical. The constraint ρn+1 > 0 therefore
leads to the following restriction on the time step:

δ t <
ρn

un ·∇ρn +ρn∇ ·un (6.12)

We can argue that the case we are most concerned with is when ρn is near zero. A reasonable approximation
to (6.12) then becomes

δ t <
ρ

ui

(
ρ−0
δxi

)
+ρ∇ ·u

=

[
ui

δxi
+∇ ·u

]−1

(6.13)

Eq. (6.13) basically adds the effect of thermal expansion to the CFL constraint and provides a reason to
prefer CFL_VELOCITY_NORM=1 as the basis for the time step restriction. To be clear, the CFL constraint is
now given by

CFL = δ t
(
‖u‖
δx

+ |∇ ·u|
)

(6.14)

Stability of particle transport

The movement of Lagrangian particles over the course of a time step is calculated using an analytical solu-
tion and remains stable regardless of the time step used by the flow solver. However, if the particle moves
over the width of several grid cells in a single time step, the momentum transferred between the particle and
the gas cannot be allocated properly to all of the affected cells. To overcome this problem, FDS subdivides
the gas phase time step based on each particle’s velocity. For example, if the particle travels across two cells
in a single gas phase time step, then its trajectory is calculated by subdividing the time step into two.

In some cases with extremely fast particles, however, the stability of the overall flow behavior may
require setting an additional parameter that limits the time step of the flow solver according to the speed of
the fastest particle in the simulation. The actual value of of the constraint is set using PARTICLE_CFL_MAX

on the MISC line. A value of 1 (default) means that the fastest moving particle can move a distance of
one grid cell during the time step. Because very fast nozzle velocities can cause extremely small time
steps and hence very long run times, the PARTICLE_CFL constraint is set to .FALSE. by default. Setting
PARTICLE_CFL to .TRUE. on the MISC line activates this constraint.

One additional parameter might be useful in some special cases. The numerical transport scheme for par-
ticles is first order accurate in time. If you want to improve the accuracy of the scheme, set
SECOND_ORDER_PARTICLE_TRANSPORT to .TRUE. on the PART line. There is an increased computa-
tional cost incurred by this option, so check whether or not the extra cost is worth the extra accuracy. For
most applications, given the relatively small time step of the gas phase solver, and the subdivision of the
particle trajectory calculation to enforce a local particle CFL constraint, the improved accuracy is not worth
the additional cost.
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Heat Transfer Constraint

Note that the heat transfer coefficient, h, has units of W/(m2 ·K). Thus, a velocity scale may be formed from
h/(ρ cp). Anytime we have a velocity scale to resolve we have a CFL-type stability restriction. Therefore,
the heat transfer stability check loops over all wall cells to ensure δ t ≤ δxρ cp/h. This check may be invoked
by setting CHECK_HT=.TRUE. on the MISC line. It is .FALSE. by default.

Adjusting the Time Step

At the end of the first part of the explicit predictor-corrector time update, the time step is checked to ensure
that it is within the appropriate stability bounds. If it is not, it is adjusted up or down by 10 % (or until it
is within limits) and the predictor part of the time step is re-run. Resetting the stability parameters is not
recommended except in very special circumstances, as they can lead to simulations failing due to numerical
instabilities. If you want to prevent FDS from automatically changing the time step, set LOCK_TIME_STEP
to .TRUE. on the TIME line, in which case the specified time step, DT, will not be adjusted. This parameter
is intended for diagnostic purposes only, for example, timing program execution. It can lead to numerical
instabilities if the initial time step is set too high.

6.4.10 Special Topic: Flux Limiters

FDS employs total variation diminishing (TVD) schemes for scalar transport. The default for LES is Super-
bee [16], so chosen because this scheme does the best job preserving the scalar variance in highly turbulent
flows with coarse grid resolution. The default scheme for DNS is CHARM [17] because the gradient steep-
ening used in Superbee forces a stair step pattern at high resolution, while CHARM is convergent. A few
other schemes (including Godunov and central differencing) are included for completeness; more details
can be found in the Tech Guide [18]. Table 6.2 below shows the integer codes which may be used to invoke
the various limiter schemes.

&MISC FLUX_LIMITER=1 / ! invoke Godunov (first-order upwind scheme)

Table 6.2: Flux limiter options.

Scheme FLUX_LIMITER

Central differencing 0

Godunov 1

Superbee (LES default) 2

MINMOD 3

CHARM (DNS default) 4

MP5 5

6.5 Initial Conditions: The INIT Namelist Group (Table 18.10)

Usually, an FDS simulation begins at time t = 0 with ambient conditions. The air temperature is assumed
constant with height, and the density and pressure decrease with height (the z direction). This decrease is
not noticed in most building scale calculations, but it is important in large outdoor simulations. There are
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some scenarios for which it is convenient to change the ambient conditions within some rectangular region
of the domain using the namelist keyword INIT.

Note that the rectangular regions defined by INIT may overlap, but in such cases, it is the second of the
overlapping regions that takes precedence, including default conditions. That is, it is possible to overwrite
the initial conditions explicitly specified by the first INIT line with the default initial conditions implied by
the second INIT line.

Species

Species concentrations can be initialized using pairs of SPEC_ID(N) and MASS_FRACTION(N) where N

is an ordinal index starting from 1. Note that N is not necessarily indicative of the order in which the
species are listed in the input file. Also note that the background species cannot be specified when using
MASS_FRACTION. The mass fraction of the background species will be set to account for any mass fraction
not specified with other species. Make sure that you specify all species (components of MASS_FRACTION(N))
on the same INIT line for example,

&INIT XB=0.0,0.1,0.0,0.025,0.0,0.1,
MASS_FRACTION(1)=0.21, SPEC_ID(1)='OXYGEN',
MASS_FRACTION(2)=0.06, SPEC_ID(2)='PROPANE' /

Here, within the region whose bounds are given by the sextuplet XB, the initial mass fractions of oxygen and
propane will be initialized to 0.21 and 0.06, respectively. You must specify the gas species using the SPEC
namelist group. See Section 12 for details.

Temperature

To modify the local initial temperature, add lines of the form,

&INIT XB=0.0,0.1,0.0,0.025,0.0,0.1, TEMPERATURE=60. /

This indicates that the temperature shall be 60 ◦C instead of the ambient within the bounds given by XB. The
INIT construct may be useful in examining the influence of stack effect in a building, where the temperature
is different inside and outside. If you wanted to initialize both temperature and species in the same volume,
both quantities would use the same INIT line,

&INIT XB=0.0,0.1,0.0,0.025,0.0,0.1,
MASS_FRACTION(1)=0.21, SPEC_ID(1)='OXYGEN',
MASS_FRACTION(2)=0.06, SPEC_ID(2)='PROPANE',
TEMPERATURE=60. /

Density

When specifying an initial density it is important to recognize the order in which FDS solves the govern-
ing equations. In the following example, initial species mass fractions, temperature, and density are all
initialized in the same volume.

&INIT XB=0.0,0.1,0.0,0.025,0.0,0.1,
MASS_FRACTION(1)=0.21, SPEC_ID(1)='OXYGEN',
MASS_FRACTION(2)=0.06, SPEC_ID(2)='PROPANE',
TEMPERATURE=60., DENSITY=1.13 /
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This example is a case where we have over-defined the problem. Since the temperature is computed from
the equation of state using the specified density, the specified temperature will not, in general, satisfy the
equation of state, and FDS will overwrite the specified temperature.

Heat Release Rate Per Unit Volume (HRRPUV)

The INIT line may also be used to specify a volumetric heat source term. For example,

&INIT XB=0.0,0.1,0.0,0.025,0.0,0.1, HRRPUV=1000. /

indicates that the region bounded by XB shall generate 1000 kW/m3. This feature is mainly useful for
diagnostics, or to model a fire in a very simple way.

6.6 The Pressure Solver: The PRES Namelist Group (Table 18.18)

6.6.1 Parameters Related to the Solution of Poisson Equation for Pressure

FDS uses a low-Mach number formulation of the Navier-Stokes equations. One of the consequences of this
is that the speed of sound is assumed infinite, and that the pressure throughout the computational domain is
affected, instantaneously, by local changes in the flow field. A simple example of this is when air is pushed
through a tunnel. If the tunnel has forced flow at one end and an opening at the other, the volume flow at the
opening is the same as that which is forced at the other end. Without any heat addition, the air is assumed
incompressible. Information is passed through the tunnel instantaneously in the model via a solution of a
linear system of equations for the pressure. For a single mesh, the solution of this Poisson equation for
the pressure is very accurate. However, for multiple meshes, there is potentially a delay in information
passing throughout the domain because the Poisson equation is solved on each individual mesh, without any
influence from the larger computational domain. The details of the numerical approach can be found in the
FDS Technical Reference Guide.

Another limitation of the pressure solver is that at solid surfaces that are not part of the boundary of the
computational domain, the pressure solver enforces a no-flux boundary condition. However, it is not perfect,
and it is possible to have a non-zero normal velocity at a solid surface. For most applications, this velocity
is so small that it has a negligible effect on the solution.

If either the error in the normal component of the velocity at a mesh interface or at a solid boundary
is large, you can reduce it by making more than the default number of calls to the pressure solver at each
time step. To do so, specify VELOCITY_TOLERANCE on the PRES line to be the maximum allowable normal
velocity component on the solid boundary or the largest error at a mesh interface. It is in units of m/s. If you
set this, experiment with different values, and monitor the number of pressure iterations required at each
time step to achieve your desired tolerance. The default value is δx/2, where δx is the characteristic grid
cell size. The number of iterations are written out to the file CHID.out. If you use a value that is too small,
the CPU time required might be prohibitive. The maximum number of iterations for each half of the time
step is given by MAX_PRESSURE_ITERATIONS, also on the PRES line. Its default value is 10.

By default, FDS will suspend the pressure iterations if the error does not drop below
ITERATION_SUSPEND_FACTOR (0.95, by default) of its previous value. If you do not want FDS to suspend
the pressure iteration, set SUSPEND_PRESSURE_ITERATIONS to .FALSE. on the PRES line. This will be
done automatically if you change the default values of VELOCITY_TOLERANCE or
MAX_PRESSURE_ITERATIONS.

If .TRUE., the parameter CHECK_POISSON tells FDS to check that the left-hand and right-hand sides
of the Poisson equation for H are equivalent (see the FDS Tech Guide [1]). The error is printed to the
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CHID.out file.

Example Case: Pressure_Solver/duct_flow

To demonstrate how to improve the accuracy of the pressure solver, consider the flow of air through a square
duct that crosses several meshes. In the sample input file, duct_flow.fds, air is pushed through a 1
m2 duct at 1 m/s. With no thermal expansion, the volume flow into the duct ought to equal the volume
flow out of the duct. Figure 6.6 displays the computed inflow and outflow as a function of time, and the
number of pressure iterations required. The outflow does not match the inflow exactly because of inac-
curacies at the solid and mesh boundaries. The VELOCITY_TOLERANCE has been set to 0.001 m/s with
MAX_PRESSURE_ITERATIONS set to 1000 and the grid cell size is 0.2 m.
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Figure 6.6: (Left) Volume flow into and out of a square duct. (Right) The number of pressure iterations as a
function of time.

Example Case: Pressure_Solver/dancing_eddies

In this example, air is pushed through a 30 cm long, two-dimensional channel at 0.5 m/s. A plate obstruction
normal to the flow creates a Karman vortex street. The computational domain is divided into 4 meshes. Two
simulations are performed, one in which the VELOCITY_TOLERANCE is set to a relatively small value, and
one in which it is set to the default value. Figure 6.7 shows the downstream pressure histories for these two
cases compared to a simulation that uses only one mesh. The case with the tighter tolerance produces a
better match to the single mesh solution, but at a higher computational cost.

One strategy for reducing the computational cost associated with a tightened tolerance on the normal
velocity at mesh boundaries is to overlap the meshes. The idea is described in detail for a non-structured
mesh in Ref. [19]. The basic idea is that a slight overlap of meshes can lead to faster convergence of the
pressure solver towards the desired level of accuracy. In the dancing_eddies test case, the case called
dancing_eddies_tight is rerun as dancing_eddies_tight_overlap where each mesh is extended
an additional 10 grid cells in the longitudinal direction. This increases the work by approximately a factor
of 85/75, but it reduces the number of iterations. Figure 6.8 shows the reduction in the number of pressure
iterations (left) and the overall reduction in CPU time (right).
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Figure 6.7: (Top) Comparison of pressure traces in the channel for two different settings of
VELOCITY_TOLERANCE, the default value on the left and a tighter tolerance on the right. (Bottom) A
contour plot of the pressure after 2 s with the default tolerance.

Special Case: True Periodic Boundaries

In Section 7.3.2, we discuss how to set periodic boundaries. By default, in order to handle the most general
case of a periodic domain with multiple meshes (imagine a periodic channel divided into several meshes),
FDS treats the pressure boundary condition as what we call an “interpolated boundary.” This means that
the matrix for the pressure Poisson equation is arranged for Dirichlet boundary conditions (the value of
the solution is specified at the boundary). This can lead to small errors in the solution and sometimes it is
desirable to use the true periodic matrix for the Poisson equation. But with the current solver (Fishpak) this
is only possible for a single mesh. If you want to implement true periodic boundaries for a single mesh case,
set the appropriate FISHPAK_BC value to zero on the PRES line. For example,

&PRES FISHPAK_BC(1:3)=0,0,0 /

6.6.2 Pressure Considerations in Long Tunnels

A common application of FDS is tunnel fires, but simulations of fires in long, relatively tight tunnels can
have spurious fluctuations in the pressure field that can lead to numerical instabilities. The root cause of
the problem is the way that FDS solves the equation for the pressure, p̃ (the tilde indicates that this is the
perturbation pressure, or pressure above background). To solve for p̃, an elliptic PDE is formed by taking
the divergence of the momentum equation, which contains the term ∇p̃/ρ . Ideally, this PDE would be of
the form:

∇ ·
(

1
ρn

)
∇ p̃n = · · · (6.15)

where n indicates the current time step. However, this equation cannot be solved efficiently because the ma-
trix of the linear system of equations that is formed when discretizing it does not have constant coefficients
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Figure 6.8: The number of pressure iterations (left) and the total CPU time (right) for overlapped and non-
overlapped meshes.

because the density, ρn, changes with each new time step, n. To get around this problem, the pressure term
in the momentum equation is decomposed as follows:

1
ρ

∇p̃ = ∇

(
p̃
ρ

)
− p̃∇

(
1
ρ

)
(6.16)

which leads to a Poisson equation that can be solved efficiently:

∇
2
(

p̃n,k

ρn

)
= ∇ · p̃n,k−1

∇

(
1

ρn

)
+ · · · (6.17)

The superscript k indicates that this equation is solved multiple times, and k indicates the iteration. With
each iteration, the old and new values of p̃ are driven closer together. The iterations continue3 until the
maximum value of the following expression in discretized form:

εk = max
i jk

∣∣∣∣∇ ·( 1
ρn

)
∇p̃n,k−∇

2
(

p̃n,k

ρn

)
+∇ · p̃n,k−1

∇

(
1

ρn

)∣∣∣∣ (6.18)

drops below a specified tolerance. By default, the PRESSURE_TOLERANCE is 20/δx2 where δx is the char-
acteristic grid cell size. If a numerical instability occurs in a simulation involving a tunnel, you could try
reducing this value on the PRES line to alleviate the mismatch between old and new pressure fields.

A simple test case, Pressure_Solver/tunnel_demo.fds, demonstrates some of the issues dis-
cussed in this section. An 8 MW fire is situated in a 4 m by 4 m by 128 m long tunnel that is sloped
10◦, closed at the lower end and open at the upper end. The tunnel is divided into 8 meshes, all the
same size, with a uniform grid of 20 cm. The case runs for a relatively short amount of time, and a
diagnostic file4 containing information about the velocity and pressure errors is printed out. This file
is generated by setting VELOCITY_ERROR_FILE to .TRUE. on the DUMP line. The name of the file is
tunnel_demo_pressit.csv. Column 1 of the file is the time step iteration. Column 2 is the pressure
iteration within the time step. Column 3 is the total number of pressure iterations for the entire simulation.
Columns 4-7 contain the mesh and cell indices where the maximum velocity error occurs, which is listed

3Keep in mind that the pressure equation iterations continue until three criteria are satisfied. The first deals with the decomposi-
tion of the pressure term, the second deals with the normal component of velocity at internal solid surfaces, and the third deals with
the mismatch of normal velocity components at mesh interfaces.

4Caution: the velocity error file can be quite large. Use it only for relatively short simulations only.
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in column 8. Columns 9-12 contain the mesh and cell indices where the maximum pressure error occurs,
which is listed in column 13.

Figure 6.9 shows the velocity and pressure errors over a short span of the simulation. For each quan-
tity, there is a default error tolerance which may or may not be reached depending on whether or not the
MAX_PRESSURE_ITERATIONS (default 10) has been reached, or whether or not the error is reduced by at
least 25 % over the previous iteration. In some situations, the error decreases slowly, and these criteria have
been added to avoid excessive iterations that lead to little improvement in accuracy. The errors shown in
Fig. 6.9 are relatively large because fires in long, closed enclosures like tunnels can generate large fluc-
tuations in pressure that challenge both the multiple mesh capability and the pressure solving algorithm
discussed above.
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Figure 6.9: Reduction in velocity and pressure error due to iteration of the pressure solver.

6.6.3 Parameters Related to the Background Pressure when Breaking Pressure Zones

There are two parameters on the PRES line that control iterative procedures related to the coupling of velocity
and pressure. One is called RELAXATION_FACTOR and its default value is 1. When there is an error in the
normal component of velocity at a solid boundary, this parameter dictates that the correction be applied in 1
time step. If its value were 0.5, the correction would be applied in 2 time steps.

A similar parameter is the PRESSURE_RELAX_TIME. It controls the rate at which the pressures in ad-
jacent compartments are brought into equilibrium following a breach. Its default value is 1 s, meaning that
equilibrium is achieved in roughly a second.

6.7 Setting Limits: The CLIP Namelist Group (Table 18.2)

The algorithms in FDS are designed to work within a certain range of values for density, temperature and
mass fraction. To prevent unphysical results, there are bounds placed on these variables to prevent a sin-
gle spurious value from causing a numerical instability. It also prevents out of range errors from calls to
temperature-dependent look-up tables. By default, FDS determines the lowest and highest values of the
variables based on your input, but it is not possible in all cases to anticipate just how low or high a given
value might be. Thus, on rare occasions you might need to set upper or lower bounds on the density, temper-
ature, or species mass fractions. Temperature and density bounds are input under the namelist group called
CLIP. The parameters are listed in Table 18.2. You only need to set these values if you notice that one of
them appears to be “cut off” when examining the results in Smokeview. For typical fire scenarios, you need
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not set these values, but if you anticipate relatively low or high values in an unusual case, take a look at the
calculation results to determine if a change in the bounds is needed.

It is possible for the species mass fractions to dip slightly below zero or increase slightly above 1. To
force the species mass fractions to remain strictly between 0 and 1, set CLIP_MASS_FRACTION to .TRUE.

on the MISC line.
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Chapter 7

Building the Model

A considerable amount of work in setting up a calculation lies in specifying the geometry of the space to
be modeled and applying boundary conditions to the solid surfaces. The geometry is described in terms of
rectangular obstructions that can heat up, burn, conduct heat, etc.; and vents from which air or fuel can be
either injected into, or drawn from, the flow domain. A boundary condition needs to be assigned to each
obstruction and vent describing its thermal properties. A fire is just one type of boundary condition. This
chapter describes how to build the model.

7.1 Bounding Surfaces: The SURF Namelist Group (Table 18.26)

Before describing how to build up the geometry, it is first necessary to explain how to describe what these
bounding surfaces consist of. SURF is the namelist group that defines the structure of all solid surfaces or
openings within or bounding the flow domain. Boundary conditions for obstructions and vents are prescribed
by referencing the appropriate SURF line(s) whose parameters are described in this section.

The default boundary condition for all solid surfaces is that of a smooth inert wall with the temperature
fixed at TMPA, and is referred to as ’INERT’. If only this boundary condition is needed, there is no need
to add any SURF lines to the input file. If additional boundary conditions are desired, they are to be listed
one boundary condition at a time. Each SURF line consists of an identification string ID=’...’ to allow
references to it by an obstruction or vent. Thus, on each OBST and VENT line that are to be described below,
the character string SURF_ID=’...’ indicates the ID of the SURF line containing the desired boundary
condition parameters. If a particular SURF line is to be applied as the default boundary condition, set
DEFAULT=.TRUE. on the SURF line.

7.2 Creating Obstructions: The OBST Namelist Group (Table 18.16)

The namelist group OBST contains parameters used to define obstructions. The entire geometry of the model
is made up entirely of rectangular solids, each one introduced on a single line in the input file.

7.2.1 Basics

Each OBST line contains the coordinates of a rectangular solid within the flow domain. This solid is defined
by two points (x1,y1,z1) and (x2,y2,z2) that are entered on the OBST line in terms of the real sextuplet XB. In
addition to the coordinates, the boundary conditions for the obstruction can be specified with the parameter
SURF_ID, which designates which SURF line (Section 7.1) to apply at the surface of the obstruction. If the
obstruction has different properties for its top, sides and bottom, do not specify only one SURF_ID. Instead,
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use SURF_IDS, an array of three character strings specifying the boundary condition IDs for the top, sides
and bottom of the obstruction, respectively. If the default boundary condition is desired, then SURF_ID or
SURF_IDS need not be set. However, if at least one of the surface conditions for an obstruction is the inert
default, it can be referred to as ’INERT’, but it does not have to be explicitly defined. For example:

&SURF ID='FIRE', HRRPUA=1000.0 /
&OBST XB=2.3,4.5,1.3,4.8,0.0,9.2, SURF_IDS='FIRE','INERT','INERT' /

puts a fire on top of the obstruction. This is a simple way of prescribing a burner.
In addition to SURF_ID and SURF_IDS, you can also use the sextuplet SURF_ID6 as follows:

&OBST XB=2.3,4.5,1.3,4.8,0.0,9.2,
SURF_ID6='FIRE','INERT','HOT','COLD','BLOW','INERT' /

where the six surface descriptors refer to the planes x = 2.3, x = 4.5, y = 1.3, y = 4.8, z = 0.0, and z = 9.2,
respectively. Note that SURF_ID6 should not be used on the same OBST line as SURF_ID or SURF_IDS.

Obstructions may be created or removed during a simulation. See Section 16.4.1 for details.

7.2.2 Thin Obstructions

Obstructions can have zero thickness. Often, thin sheets, like a window, form a barrier, but if the numerical
mesh is coarse relative to the thickness of the barrier, the obstruction might be unnecessarily large if it is
assumed to be one layer of mesh cells thick. All faces of an obstruction are shifted to the closest mesh cell. If
the obstruction is very thin, the two faces may be approximated on the same cell face. FDS and Smokeview
render this obstruction as a thin sheet, but it is allowed to have thermally thick boundary conditions. This
feature is fragile, especially in terms of burning and blowing gas. A thin sheet obstruction can only have one
velocity vector on its face, thus a gas cannot be injected reliably from a thin obstruction because whatever
is pushed from one side is necessarily pulled from the other. For full functionality, the obstruction should
be specified to be at least one mesh cell thick. Thin sheet obstructions work fine as flow barriers, but other
features are fragile and should be used with caution. To prevent FDS from allowing thin sheet obstructions,
set THICKEN_OBSTRUCTIONS=.TRUE. on the MISC line, or THICKEN=.TRUE. on each OBST line for
which the thin sheet assumption is not allowed.

Obstructions that are too small relative to the underlying numerical mesh are rejected. Be careful when
testing cases on coarse meshes.

7.2.3 Overlapping Obstructions

If the faces of two obstructions overlap each other, FDS will choose the surface properties of the obstruction
that is specified second in the input file. If you do not want this, add OVERLAY=.FALSE. to the OBST line
of the second obstruction, in which case the surface properties of the first obstruction will be applied. The
default value of OVERLAY is .TRUE.

When obstructions overlap, Smokeview renders both obstructions independently of each other, often
leading to an unsightly cross-hatching of the two surface colors where there is an overlap. A simple remedy
for this is to “shrink” the obstruction you do not wish to take precedence by slightly by adjusting its coor-
dinates (XB) accordingly. Then, in Smokeview, toggle the “q” key to show the obstructions as you specified
them, rather than as FDS rendered them.
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7.2.4 Preventing Obstruction Removal

Obstructions can be protected from the HOLE punching feature. Sometimes it is convenient to create a door
or window using a HOLE. For example, suppose a HOLE is punched in a wall to represent a door or window.
An obstruction can be defined to fill this hole (presumably to be removed or colored differently or whatever)
so long as the phrase PERMIT_HOLE=.FALSE. is included on the OBST line. In general, any obstruction can
be made impenetrable to a HOLE using this phrase. By default, PERMIT_HOLE=.TRUE., meaning that an
obstruction is assumed to be penetrable unless otherwise directed. Note that if a penetrable obstruction and
an impenetrable obstruction overlap, the obstruction with PERMIT_HOLE=.FALSE. should be listed first.

If the obstruction is not to be removed or rejected for any reason, set REMOVABLE=.FALSE. This is
sometimes needed to stop FDS from removing the obstruction if it is embedded within another, like a door
within a wall.

In rare cases, you might not want to allow a VENT to be attached to a particular obstruction, in which
case set ALLOW_VENT=.FALSE.

7.2.5 Transparent or Outlined Obstructions

Obstructions can be made semi-transparent by assigning a TRANSPARENCY on the OBST line. This real
parameter ranges from 0 to 1, with 0 being fully transparent. The parameter should always be set along with
either COLOR or an RGB triplet. It can also be specified on the appropriate SURF line, along with a color
indicator. If you want the obstruction to be invisible, set COLOR=’INVISIBLE’.

Obstructions are typically drawn as solids in Smokeview. To draw an outline representation, set OUTLINE
equal to .TRUE.

7.2.6 Creating Holes in Obstructions: The HOLE Namelist Group (Table 18.8)

The HOLE namelist group defines parameters that carve a hole out of an existing obstruction or set of ob-
structions. To do this, add lines of the form

&HOLE XB=2.0,4.5,1.9,4.8,0.0,9.2 /

Any solid mesh cells within the volume 2.0 < x < 4.5, 1.9 < y < 4.8, 0.0 < z < 9.2 are removed. Obstruc-
tions intersecting the volume are broken up into smaller blocks. If the hole represents a door or window, a
good rule of thumb is to punch more than enough to create the hole. This ensures that the hole is created
through the entire obstruction. For example, if the OBST line denotes a wall 0.1 m thick:

&OBST XB=1.0,1.1,0.0,5.0,0.0,3.0 /

and you want to create a door, add this:

&HOLE XB=0.99,1.11,2.0,3.0,0.0,2.0 /

The extra centimeter added to the x coordinates of the hole make it clear that the hole is to punch through
the entire obstruction.

When a HOLE is created, the affected obstruction(s) are either rejected, or created or removed at pre-
determined times. See Section 16.4.1 for details. To allow a hole to be controlled with either the CTRL or
DEVC namelist groups, you will need to add the CTRL_ID or DEVC_ID parameter respectively, to the HOLE
line. When the state of the HOLE evaluates to .FALSE., an obstruction will be placed in the HOLE. By default
the obstruction filling the HOLE will take the color of the surrounding OBST that the HOLE was punched
through. To make the obstruction filling the HOLE a different color than the original obstruction, set the
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COLOR or integer triplet RGB on the HOLE line (see Section 7.4). If you want the obstruction filling the HOLE
to be invisible, then set COLOR=’INVISIBLE’. Additionally, you may use the keyword TRANSPARENCY,
real number from 0 to 1, to make the obstruction filling the HOLE transparent. See Section 16.4.1 for an
example.

If an obstruction is not to be punctured by a HOLE, add PERMIT_HOLE=.FALSE. to the OBST line. Note
that a HOLE has no effect on a VENT or a mesh boundary. It only applies to OBSTstructions.

It is a good idea to inspect the geometry by running either a setup job (T_END=0 on the TIME line) or a
short-time job to test the operation of devices and control functions.

7.3 Applying Surface Properties: The VENT Namelist Group (Table 18.30)

Whereas the OBST group is used to specify obstructions within the computational domain, the VENT group
(Table 18.30) is used to prescribe planes adjacent to obstructions or external walls. Note that the label VENT
is used for historical reasons – this group of parameters has evolved well beyond its initial role as simply
allowing for air to be blown into, or sucked out of, the computational domain.

7.3.1 Basics

The vents are chosen in a similar manner to the obstructions, with the sextuplet XB denoting a plane abutting
a solid surface. Two of the six coordinates must be the same, denoting a plane as opposed to a solid. Note
that only one VENT may be specified for any given wall cell. If additional VENT lines are specified for a
given wall cell, FDS will output a warning message and ignore redundant VENT lines.

The term “VENT” is somewhat misleading. Taken literally, a VENT can be used to model components of
the ventilation system in a building, like a diffuser or a return. In these cases, the VENT coordinates form a
plane on a solid surface forming the boundary of the duct. No holes need to be created through the solid; it
is assumed that air is pushed out of or sucked into duct work within the wall. Less literally, a VENT is used
simply as a means of applying a particular boundary condition to a rectangular patch on a solid surface.
A fire, for example, is usually created by first generating a solid obstruction via an OBST line, and then
specifying a VENT somewhere on one of the faces of the solid with a SURF_ID with the characteristics of
the thermal and combustion properties of the fuel. For example, the lines

&OBST XB=0.0,5.0,2.0,3.0,0.0,4.0, SURF_ID='big block' /
&VENT XB=1.0,2.0,2.0,2.0,1.0,3.0, SURF_ID='hot patch' /

specify a large obstruction (with the properties given elsewhere in the file under the name ’big block’)
with a “patch” applied to one of its faces with alternative properties under the name ’hot patch’. This
latter surface property need not actually be a “vent,” like a supply or return duct, but rather just a patch with
different boundary conditions than those assumed for the obstruction. Note that the surface properties of a
VENT over-ride those of the underlying obstruction.

A VENT must always be attached to a solid obstruction. See Section 9.1 for instructions on specifying
different types of fans that allow gases to flow through.

An easy way to specify an entire external wall is to replace XB with MB (Mesh Boundary), a character
string whose value is one of the following: ’XMAX’, ’XMIN’, ’YMAX’, ’YMIN’, ’ZMAX’ or ’ZMIN’ de-
noting the planes x = XMAX, x = XMIN, y = YMAX, y = YMIN, z = ZMAX or z = ZMIN, respectively. Like
an obstruction, the boundary condition index of a vent is specified with SURF_ID, indicating which of the
listed SURF lines to apply. If the default boundary condition is desired, then SURF_ID need not be set.

Be careful when using the MB shortcut when doing a multiple mesh simulation; that is, when more than
one rectangular mesh is used. The plane designated by the character string MB may be mistakenly applied
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to more than one mesh, possibly leading to confusion about whether a plane is a solid wall or an open
boundary. Check the geometry in Smokeview to assure that the VENTs are properly specified. Use color as
much as possible to double-check the set-up. More detail on color in Section 7.4 and Table 7.1. Also, the
parameter OUTLINE=.TRUE. on the VENT line causes the VENT to be drawn as an outline in Smokeview.

7.3.2 Special Vents

There are three reserved SURF_ID’s that may be applied to a VENT – ’OPEN’, ’MIRROR’, and ’PERIODIC’.
The term reserved means that these SURF_IDs should not be explicitly defined by you. Their properties are
predefined.

Open Vents

The first special VENT is invoked by the parameter SURF_ID=’OPEN’. This is used only if the VENT is
applied to the exterior boundary of the computational domain, where it denotes a passive opening to the
outside. By default, FDS assumes that the exterior boundary of the computational domain (the XBs on the
MESH line) is a solid wall. To create a totally or partially open domain, use OPEN vents on the exterior
mesh boundaries. It is sometimes convenient to specify doors or windows that open out to the exterior of the
computational domain by simply specifying it to be OPEN. However, keep in mind that the pressure boundary
condition on such an opening is imperfect, and it is recommended that if the flow through the doorway or
window is important, you should extend the domain a few meters rather than use an OPEN boundary. You
would still have to use the OPEN boundary to open up one or more sides of the computational domain, but
these openings would be far enough away from the modeled door or window that they would not affect the
flow pattern.

By default, it is assumed that ambient conditions exist beyond the ’OPEN’ vent. However, in some cases,
you may want to alter this assumption, for example, the temperature. If you assume a temperature other than
ambient, specify TMP_EXTERIOR along with SURF_ID=’OPEN’. You can modify the time history of this
parameter using a ramp function, TMP_EXTERIOR_RAMP. Use this option cautiously – in many situations if
you want to describe the exterior of a building, it is better to include the exterior explicitly in your calculation
because the flow in and out of the doors and windows will be more naturally captured. See Section 10.1.1
for more details. If you want to specify a non-ambient pressure at the OPEN boundary, see Section 9.4.

The OPEN pressure boundary condition is most stable for flows that are predominantly normal to the
vent, either mostly in or mostly out. This is because the prescribed pressure at an OPEN boundary is ill-
conditioned (a small perturbation to the input may lead to large change in the output) if the flow is parallel
to the vent. Suppose, for example, that an outdoor flow is 10 m/s in the x direction and ±0.001 m/s in the
z direction with an OPEN top boundary. The kinetic energy of this flow is roughly k = 50 m2/s2. When the
vertical velocity is positive (+0.001 m/s) then the prescribed boundary condition for the stagnation pressure
is set to H = k = 50 m2/s2. But when the vertical velocity is negative (-0.001 m/s) then H = 0 (see [18]). For
this reason, OPEN vents should be used with care in outdoor applications. See Section 10.2 for an alternative
approach.

Vents to the outside of the computational domain (OPEN vents) can be opened or closed during a sim-
ulation. It is best done by creating or removing a thin obstruction that covers the OPEN VENT. See Sec-
tion 16.4.2 for details.

Mirror Vents

A VENT with SURF_ID=’MIRROR’ denotes a symmetry plane. Usually, a MIRROR spans an entire face of
the computational domain, essentially doubling the size of the domain with the MIRROR acting as a plane
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of symmetry. The flow on the opposite side of the MIRROR is exactly reversed1. From a numerical point
of view, a MIRROR is a no-flux, free-slip boundary. As with OPEN, a MIRROR can only be prescribed at an
exterior boundary of the computational domain. Often, OPEN or MIRROR VENTs are prescribed along an
entire side of the computational domain, in which case the “MB” notation is handy.

In conventional RANS (Reynolds-Averaged Navier-Stokes) models, symmetry boundaries are often
used as a way of saving on computation time. However, because FDS is an LES (Large Eddy Simulation)
model, the use of symmetry boundaries should be considered carefully. The reason for this is that an LES
model does not compute a time-averaged solution of the N-S equations. In other words, for a RANS model,
a fire plume is represented as an axially-symmetric flow field because that is what you would expect if you
time-averaged the actual flow field over a sufficient amount of time. Thus, for a RANS model, a symmetry
boundary along the plume centerline is appropriate. In an LES model, however, there is no time-averaging
built into the equations, and there is no time-averaged, symmetric solution. Putting a MIRROR boundary
along the centerline of a fire plume will change its dynamics entirely. It will produce something very much
like the flow field of a fire that is adjacent to a vertical wall. For this reason, a MIRROR boundary condition
is not recommended along the centerline of a turbulent fire plume. If the fire or burner is very small, and
the flow is laminar, then the MIRROR boundary condition makes sense. In fact, in 2-D calculations, MIRROR
boundary conditions are employed in the third coordinate direction (this is done automatically, you need not
specify it explicitly).

Periodic Vents

A VENT with SURF_ID=’PERIODIC’ may be used in combination with another periodic vent on the bound-
ary of the domain in any of the three coordinate directions. As an example, consider the following (valid for
a single mesh case):

&VENT MB='XMIN', SURF_ID='PERIODIC' /
&VENT MB='XMAX', SURF_ID='PERIODIC' /

In this example, the entire XMIN boundary is periodic with the XMAX boundary.
For multi-mesh cases with PERIODIC boundaries the VENT planes must be specified using PBX, PBY, or

PBZ. If xmin = 0 and xmax = 1, for example, use

&VENT PBX=0, SURF_ID='PERIODIC' /
&VENT PBX=1, SURF_ID='PERIODIC' /

Also, you must explicitly tell FDS that two non-connected meshes need to share information. To do this,
use the parameter PERIODIC_MESH_IDS(1:3) on the appropriate MESH lines. For example, suppose you
have three meshes side by side. Mesh 1 and Mesh 3 have periodic boundaries, but they do not physically
touch each other. Provide this information as follows:

&MESH ID='mesh1', IJK=..., XB=..., PERIODIC_MESH_IDS(1)='mesh3' /
&MESH ID='mesh2', IJK=..., XB=... /
&MESH ID='mesh3', IJK=..., XB=..., PERIODIC_MESH_IDS(1)='mesh1' /

Note that PERIODIC_MESH_IDS is an array of three character strings because it is possible to have three
periodic boundaries, one in each coordinate direction. In cases where the number of meshes is not large,
say a few dozen, you can set PROCESS_ALL_MESHES to .TRUE. on the MISC line, in which case FDS
will store the geometry of all meshes for all MPI processes, and in which case you need not specify

1Note that the mirror image of a scene is not shown in Smokeview.
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PERIODIC_MESH_IDS.
For additional information related to periodic boundaries and the pressure solver see Section 6.6.1.
Periodic vents may not be used to connect offset vents or vents in different coordinate directions. For

such cases, you must employ HVAC capabilities (see Section 9.2).

Circular Vents

Circular or semi-circular vents may be specified as the intersection of a rectangle with coordinates XB

and a circle with center XYZ and radius RADIUS. The rectangular surface cells that are assigned the cor-
responding SURF_ID will be those whose centroid falls within the intersection. In the example case called
Fires/circular_burner.fds, the following two lines create a circular vent that is 1 m in diameter and
flows propane gas at a rate of 0.02 kg/m2/s:

&SURF ID='BURNER', MASS_FLUX(1)=0.02, SPEC_ID(1)='PROPANE', TAU_MF(1)=0.01 /
&VENT XB=-0.6,0.6,-0.6,0.6,0,0, XYZ=0,0,0, RADIUS=0.5, SURF_ID='BURNER',

SPREAD_RATE=0.05 /

The XB coordinates designate the orientation of the vent. In this case, the extent of the area specified by
XB is large enough to contain the entire circle. Note also in this example that the parameter SPREAD_RATE
causes the fire to spread outward at a rate of 0.05 m/s. The mass flux of propane through the vent is plotted
in Fig. 7.1. Notice that the mass flux increases following a “t-squared” profile. This is what is expected
of a fire which spreads radially at a linear rate. In this case, the fire reaches the RADIUS of the circle in
10 s, as expected. Note also that the parameter TAU_MF indicates that the fuel should ramp up quickly once
the flame front reaches a given grid cell. In other words, TAU_MF controls the local ramp-up of fuel; the
SPREAD_RATE controls the global ramp-up. Following the ramp-up, the fuel flows at a rate equal to the area
of the circle times the mass flux of fuel per unit area. Even if the circle is crudely resolved on a coarse grid,
the fuel flow rate will be adjusted to produce the desired value governed by the circular vent.
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Figure 7.1: Results of the circular_burner test case.

7.3.3 Controlling Vents

VENT functionality can be controlled in some cases using “devices” and “controls,” specified via a DEVC_ID
or a CTRL_ID. See Section 16.4.2 for details.
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7.3.4 Trouble-Shooting Vents

Unlike most of the entries in the input file, the order that you specify VENTs can be important. There might
be situations where it is convenient to position one VENT atop another. For example, suppose you want to
designate the ceiling of a compartment to have a particular set of surface properties, and you designate the
entire ceiling to have the appropriate SURF_ID. Then, you want to designate a smaller patch on the ceiling
to have another set of surface properties, like an air supply. In this case, you must designate the supply
VENT first because for that area of the ceiling, FDS will ignore the ceiling properties and apply the supply
properties. FDS processes the first VENT, not the second as it did in versions prior to FDS 5. Now, the rule
for VENTs is “first come, first served.” Keep in mind, however, that the second VENT is not rejected entirely
– only where there is overlap. FDS will also print out a warning to the screen (or to standard error) saying
which VENT has priority.

Smokeview can help identify where two VENTs overlap, assuming each has a unique COLOR. Because
Smokeview draws VENTs on top of each other, areas of overlap will have a grainy, awkward appearance
that changes pattern as you move the scene. In situations where you desire the overlap for the sake of
convenience, you might want to slightly adjust the coordinates of the preferred VENT so that it is slightly
offset from the solid surface. Make the offset less than about a tenth of a cell dimension so that FDS snaps
it to its desired location. Then, by toggling the “q” key in Smokeview, you can eliminate the grainy color
overlap by showing the VENT exactly where you specified it, as opposed to where FDS repositioned it. This
trick also works where the faces of two obstructions overlap.

If an error message appears requesting that the orientation of a vent be specified, first check to make sure
that the vent is a plane. If the vent is a plane, then the orientation can be forced by specifying the parameter
IOR. If the normal direction of the VENT is in the positive x direction, set IOR=1. If the normal direction
is in the negative x direction, set IOR=-1. For the y and z direction, use the number 2 and 3, respectively.
Setting IOR may sometimes solve the problem, but it is more likely that if there is an error message about
orientation, then the VENT is buried within a solid obstruction, in which case the program cannot determine
the direction in which the VENT is facing.

7.4 Coloring Obstructions, Vents, Surfaces and Meshes

It is useful when visualizing the results of a simulation to assign to objects a meaningful color or pattern.
There are two ways to do this in FDS. You can either assign a single color, or you can assign a texture map,
which is essentially an image of a your choosing.

7.4.1 Colors

Colors for many items within FDS can be prescribed in two ways; a triplet of integer color values, RGB, or
a character string, COLOR. The three RGB integers range from 0 to 255, indicating the amount of Red, Green
and Blue that make up the color. If you define the COLOR by name, it is important that you type the name
exactly as it is listed in the color tables. Color parameters can be specified on a SURF line, in which case
all surfaces of that type will have that color, or color parameters can be applied directly to obstructions or
vents. For example, the lines:

&SURF ID='UPHOLSTERY', ..., RGB=0,255,0 /
&OBST XB=..., COLOR='BLUE' /
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will color all UPHOLSTERY green and this particular obstruction blue. Table 7.1 provides a small sampling
of RGB values and COLOR names for a variety of colors2. It is highly recommended that colors be assigned
to surfaces via the SURF line because as the geometries of FDS simulations become more complex, it is
very useful to use color as a spot check to determine if the desired surface properties have been assigned
throughout the room or building under study.

Obstructions and vents may be colored individually, over-riding the color designated by the SURF line.
The special case COLOR=’INVISIBLE’ causes the vent or obstruction not to be drawn by Smokeview.

7.4.2 Texture Maps

There are various ways of prescribing the color of various objects within the computational domain, but
there is also a way of pasting images onto the obstructions for the purpose of making the Smokeview images
more realistic. This technique is known as “texture mapping.” For example, to apply a wood paneling image
to a wall, add to the SURF line defining the physical properties of the paneling the line:

&SURF ID='wood paneling',..., TEXTURE_MAP='paneling.jpg', TEXTURE_WIDTH=1.,
TEXTURE_HEIGHT=2. /

Assuming that a JPEG file called paneling.jpg exists in the working directory, Smokeview should read it
and display the image wherever the paneling is used. Note that the image does not appear when Smokeview
is first invoked. It is an option controlled by the Show/Hide menu. The parameters TEXTURE_WIDTH and
TEXTURE_HEIGHT are the physical dimensions of the image. In this case, the JPEG image is of a 1 m wide
by 2 m high piece of paneling. Smokeview replicates the image as often as necessary to make it appear that
the paneling is applied where desired. Consider carefully how the image repeats itself when applied in a
scene. If the image has no obvious pattern, there is no problem with the image being repeated. If the image
has an obvious direction, the real triplet TEXTURE_ORIGIN should be added to the VENT or OBST line to
which a texture map should be applied. For example,

&OBST XB=1.,2.,3.,4.,5.,7., SURF_ID='wood paneling', TEXTURE_ORIGIN=1.,3.,5. /

applies paneling to an obstruction whose dimensions are 1 m by 1 m by 2 m, such that the image of the
paneling is positioned at the point (1,3,5). The default value of TEXTURE_ORIGIN is (0,0,0), and the global
default can be changed by added a TEXTURE_ORIGIN statement to the MISC line.

7.5 Repeated Objects: The MULT Namelist Group (Table 18.15)

Sometimes obstructions, holes and vents are repeated over and over in the input file. This can be tedious to
create and make the input file hard to read. However, if a particular set of objects repeats itself in a regular
pattern, you can use a utility known as a multiplier. If you want to repeat an obstruction, for example, create
a line in the input file as follows:

&MULT ID='m1', DX=1.2, DY=2.4, I_LOWER=-2, I_UPPER=3, J_LOWER=0, J_UPPER=5 /
&OBST XB=x1,x2,y1,y2,z1,z2, MULT_ID='m1' /

This has the effect of making an array of obstructions according to the following formulae:

x1’= x1+DX0+ i DX ; I_LOWER≤ i≤ I_UPPER

2A complete listing of all 500+ colors can be found by searching the FDS source code file data.f90.
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Table 7.1: A sample of color definitions.

Name R G B Name R G B
AQUAMARINE � 127 255 212 MAROON � 128 0 0

ANTIQUE WHITE � 250 235 215 MELON � 227 168 105
BEIGE � 245 245 220 MIDNIGHT BLUE � 25 25 112
BLACK � 0 0 0 MINT � 189 252 201
BLUE � 0 0 255 NAVY � 0 0 128

BLUE VIOLET � 138 43 226 OLIVE � 128 128 0
BRICK � 156 102 31 OLIVE DRAB � 107 142 35
BROWN � 165 42 42 ORANGE � 255 128 0

BURNT SIENNA � 138 54 15 ORANGE RED � 255 69 0
BURNT UMBER � 138 51 36 ORCHID � 218 112 214
CADET BLUE � 95 158 160 PINK � 255 192 203
CHOCOLATE � 210 105 30 POWDER BLUE � 176 224 230
COBALT � 61 89 171 PURPLE � 128 0 128
CORAL � 255 127 80 RASPBERRY � 135 38 87
CYAN � 0 255 255 RED � 255 0 0

DIMGRAY � 105 105 105 ROYAL BLUE � 65 105 225
EMERALD GREEN � 0 201 87 SALMON � 250 128 114

FIREBRICK � 178 34 34 SANDY BROWN � 244 164 96
FLESH � 255 125 64 SEA GREEN � 84 255 159

FOREST GREEN � 34 139 34 SEPIA � 94 38 18
GOLD � 255 215 0 SIENNA � 160 82 45

GOLDENROD � 218 165 32 SILVER � 192 192 192
GRAY � 128 128 128 SKY BLUE � 135 206 235
GREEN � 0 255 0 SLATEBLUE � 106 90 205

GREEN YELLOW � 173 255 47 SLATE GRAY � 112 128 144
HONEYDEW � 240 255 240 SPRING GREEN � 0 255 127
HOT PINK � 255 105 180 STEEL BLUE � 70 130 180

INDIAN RED � 205 92 92 TAN � 210 180 140
INDIGO � 75 0 130 TEAL � 0 128 128
IVORY � 255 255 240 THISTLE � 216 191 216

IVORY BLACK � 41 36 33 TOMATO � 255 99 71
KELLY GREEN � 0 128 0 TURQUOISE � 64 224 208

KHAKI � 240 230 140 VIOLET � 238 130 238
LAVENDER � 230 230 250 VIOLET RED � 208 32 144

LIME GREEN � 50 205 50 WHITE � 255 255 255
MAGENTA � 255 0 255 YELLOW � 255 255 0
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Figure 7.2: An example of the multiplier function.

x2’= x2+DX0+ i DX ; I_LOWER≤ i≤ I_UPPER

y1’= y1+DY0+ j DY ; J_LOWER≤ j ≤ J_UPPER

y2’= y2+DY0+ j DY ; J_LOWER≤ j ≤ J_UPPER

z1’= z1+DZ0+ k DZ ; K_LOWER≤ k ≤ K_UPPER

z2’= z2+DZ0+ k DZ ; K_LOWER≤ k ≤ K_UPPER

In situations where the position of the obstruction needs shifting prior to the multiplication, use the param-
eters DX0, DY0, and DZ0.

A variation of this idea is to replace the parameters, DX, DY, and DZ, with a sextuplet called DXB. The
six entries in DXB increment the respective values of the obstruction coordinates given by XB. For example,
the x coordinates are transformed as follows:

x1’= x1+DX0+n DXB(1) ; N_LOWER≤ n≤ N_UPPER

x2’= x2+DX0+n DXB(2) ; N_LOWER≤ n≤ N_UPPER

Notice that we use N_LOWER and N_UPPER to denote the range of N. This more flexible input scheme allows
you to create, for example, a slanted roof in which the individual roof segments shorten as they ascend to
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the top. This feature is demonstrated by the following short input file that creates a hollowed out pyramid
using the four perimeter obstructions that form the outline of its base:

&HEAD CHID='pyramid', TITLE='Simple demo of multiplier function' /
&MESH IJK=100,100,100, XB=0.0,1.0,0.0,1.0,0.0,1.0 /
&TIME T_END=0. /
&MULT ID='south', DXB=0.01,-.01,0.01,0.01,0.01,0.01, N_LOWER=0, N_UPPER=39 /
&MULT ID='north', DXB=0.01,-.01,-.01,-.01,0.01,0.01, N_LOWER=0, N_UPPER=39 /
&MULT ID='east', DXB=-.01,-.01,0.01,-.01,0.01,0.01, N_LOWER=0, N_UPPER=39 /
&MULT ID='west', DXB=0.01,0.01,0.01,-.01,0.01,0.01, N_LOWER=0, N_UPPER=39 /
&OBST XB=0.10,0.90,0.10,0.11,0.10,0.11, MULT_ID='south', COLOR='RED' /
&OBST XB=0.10,0.90,0.89,0.90,0.10,0.11, MULT_ID='north', COLOR='BLUE' /
&OBST XB=0.10,0.11,0.11,0.89,0.10,0.11, MULT_ID='west', COLOR='GREEN' /
&OBST XB=0.89,0.90,0.11,0.89,0.10,0.11, MULT_ID='east', COLOR='CYAN' /
&MULT ID='holes', DX=0.15, DZ=0.1, I_UPPER=1, K_UPPER=1 /
&HOLE XB=0.40,0.45,0.00,1.00,0.15,0.20, MULT_ID='holes' /
&TAIL /

The end result of this input file is to create a pyramid by repeating long, rectangular obstructions at the base
of each face in a stair-step pattern. Note in this case the use of N_LOWER and N_UPPER which automatically
cause FDS to repeat the obstructions in sequence rather than as an array.

Note that the MULTiplication functionality works for MESH, OBST, HOLE, VENT, and INIT lines. For a
MESH, it only applies to the bounds (XB) of the mesh, not the number of cells.
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Chapter 8

Fire and Thermal Boundary Conditions

This chapter describes how to specify the thermal properties of solid objects. This is the most challenging
part of setting up the simulation. Why? First, for both real and simulated fires, the growth of the fire
is very sensitive to the thermal properties of the surrounding materials. Second, even if all the material
properties are known to some degree, the physical phenomena of interest may not be simulated properly
due to limitations in the model algorithms or resolution of the numerical mesh. It is your responsibility to
supply the thermal properties of the materials, and then assess the performance of the model to ensure that
the phenomena of interest are being captured.

8.1 Basics

By default, the outer boundary of the computational domain is assumed to be a solid boundary that is
maintained at ambient temperature. The same is true for any obstructions that are added to the scene. To
specify the properties of solids, use the namelist group SURF (Section 7.1). Solids are assumed to consist
of layers that can be made of different materials. The properties of each material required are designated
via the MATL namelist group (Section 8.3). These properties indicate how rapidly the materials heat up, and
how they burn. Each MATL entry in the input file must have an ID, or name, so that they may be associated
with a particular SURF via the parameter MATL_ID. For example, the input file entries:

&MATL ID='BRICK', CONDUCTIVITY=0.69, SPECIFIC_HEAT=0.84, DENSITY=1600. /
&SURF ID='BRICK WALL', MATL_ID='BRICK', COLOR='RED', BACKING='EXPOSED',

THICKNESS=0.20 /
&OBST XB=0.1,5.0,1.0,1.2,0.0,1.0, SURF_ID='BRICK WALL' /

define a brick wall that is 4.9 m long, 1 m high, and 20 cm thick. Note that the thickness of the wall indicated
by the OBST line is independent of the THICKNESS specified by the SURF line. The OBST line defines the
geometry of the obstruction (i.e., how the obstruction is seen by the flow solver). The SURF line defines
the heat transfer characteristics of the obstruction (i.e., how the obstruction is seen by the 1D solid phase
solver). This allows an obstruction to snap to the local grid but still have the heat transfer solution reflect the
actual thickness.
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8.2 Surface Temperature and Heat Flux

This section describes how to specify simple thermal boundary conditions. These are often used when there
is little or no information about the properties of the solid materials. If the properties of the materials are
known, it is better to specify these properties and let the model compute the heat flux to, and temperature
of, the walls and other solid surfaces.

8.2.1 Specified Solid Surface Temperature

Usually, the thermal properties of a solid boundary are specified via the MATL namelist group, which is in
turn invoked by the SURF entry via the character string MATL_ID. However, sometimes it is convenient to
specify a fixed temperature boundary condition, in which case set TMP_FRONT to be the surface temperature
in units of ◦C:

&SURF ID='HOT WALL', COLOR='RED', TMP_FRONT=200. /

Note that there is no need to specify a MATL_ID or THICKNESS. Because the wall is to be maintained at the
given temperature, there is no need to say anything about its material composition or thickness.

8.2.2 Special Topic: Convective Heat Transfer Options

This section is labeled as a special topic because normally you do not need to modify the convective heat
transfer model in FDS. However, there are special cases for which the default model may not be adequate,
and this section describes some options.

Default Convective Heat Transfer Model

In an LES calculation, the convective heat transfer coefficient, h, is based on a combination of natural and
forced convection correlations:

q̇′′c = h(Tg−Tw) W/m2 ; h = max
[

C |Tg−Tw|
1
3 ,

k
L

Nu
]

W/(m2 ·K) (8.1)

where C is a empirical coefficient for natural convection (1.52 for a horizontal plate and 1.31 for a vertical
plane or cylinder) [20], L is a characteristic length related to the size of the physical obstruction, and k is the
thermal conductivity of the gas. The Nusselt number (Nu) depends on the geometric and flow characteristics.
For many flow regimes, it has the form:

Nu =C1 +C2 Ren Prm ; Re =
ρ|u|L

µ
; Pr = 0.7 (8.2)

For planar surfaces, the default values are C1 = 0, C2 = 0.037, n = 0.8, m = 0.33, and L = 1 m. For
cylindrical surfaces, the default values are C1 = 0, C2 = 0.683, n = 0.466, m = 0.33, and L = D, the diameter
of the cylinder. For spherical surfaces, the default values are C1 = 2, C2 = 0.6, n = 0.5, m = 0.33, and L = D,
the diameter of the sphere. Note that for a sphere, the coefficient for natural convection, C, is assumed to be
zero. It is possible to change these values for a particular application, but it is not possible to find a set of
parameters that is appropriate for the wide variety of scenarios considered. Various correlations for planes,
cylinders, and spheres can be found in Refs. [20, 21].

You can change the values of the empirical coefficient for natural convection, C, by specifying
C_HORIZONTAL and C_VERTICAL on the SURF line. The length scale, L, is specified by
CONVECTION_LENGTH_SCALE on the SURF line. You can change the empirical coefficients for the forced
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convection model by using C_FORCED_CONSTANT, C_FORCED_RE, C_FORCED_RE_EXP, and
C_FORCED_PR_EXP for the constants C1, C2, n, and m in the Nusselt number correlation, all of which
are input on the SURF line.

Logarithmic Law of the Wall

Near-wall treatments, such as wall models or wall functions, aim to mimic the sudden change from molec-
ular to turbulent transport close to the walls using algebraic formulations without the need of resolving
the otherwise computationally expensive region of flow-field. The main theory follows dimensional anal-
ysis based on the idea that shear at the wall is constant. Accordingly, the non-dimensional velocity u+ is
calculated using a wall function [18].

By analogy, we define the non-dimensional temperature T+ ≡ (Tg−Tw)/Tτ , where Tg is the gas tem-
perature of the first off-wall grid cell and Tτ is defined with the wall heat flux, q̇′′w, as Tτ = q̇′′w/ρwuτcp. The
local heat transfer coefficient is then obtained from

h =
q̇′′w

Tg−Tw
=

ρw cp uτ

T+
(8.3)

Refer to the FDS Tech Guide [18] for further details of the formulation. To specify this heat transfer model
for a particular surface, set HEAT_TRANSFER_MODEL equal to ’LOGLAW’ on the SURF line.

Specified Convective Heat Transfer Coefficient

If you want to specify the convective heat transfer coefficient, you can set it to a constant using
HEAT_TRANSFER_COEFFICIENT on the SURF line in units of W/(m2 ·K).

Specifying the Heat Flux at a Solid Surface

Instead of altering the convective heat transfer coefficient, you may specify a fixed heat flux directly. Two
methods are available to do this. The first is to specify a NET_HEAT_FLUX in units of kW/m2. When this
is specified FDS will compute the surface temperature required to ensure that the combined radiative and
convective heat flux from the surface is equal to the NET_HEAT_FLUX. The second method is to specify
separately the CONVECTIVE_HEAT_FLUX, in units of kW/m2, and the radiative heat flux. The radiative heat
flux is specified by setting both TMP_FRONT and EMISSIVITY appropriately on the SURF line. Note that if
you wish there to be only a convective heat flux from a surface, then the EMISSIVITY should be set to zero.
If NET_HEAT_FLUX or CONVECTIVE_HEAT_FLUX is positive, the wall heats up the surrounding gases. If
NET_HEAT_FLUX or CONVECTIVE_HEAT_FLUX is negative, the wall cools the surrounding gases.

8.2.3 Special Topic: Adiabatic Surfaces

For some special applications, it is often desired that a solid surface be adiabatic, that is, there is no net heat
transfer (radiative and convective) from the gas to the solid. For this case, all that must be prescribed on the
SURF line is ADIABATIC=.TRUE., and nothing else. FDS will compute a wall temperature so that the sum
of the net convective and radiative heat flux is zero. Specifying a surface as ADIABATIC will result in FDS
defining NET_HEAT_FLUX=0 and EMISSIVITY=1.

No solid surface is truly adiabatic; thus, the specification of an adiabatic boundary condition should be
used for diagnostic purposes only.
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8.3 Heat Conduction in Solids

Specified temperature or heat flux boundary conditions are easy to apply, but only of limited usefulness in
real fire scenarios. In most cases, walls, ceilings and floors are made up of several layers of lining materials.
The MATL namelist group is used to define the properties of the materials that make up boundary solid
surfaces. A solid boundary can consist of multiple layers1 of different materials, and each layer can consist
of multiple material components.

8.3.1 Structure of Solid Boundaries

Material layers and components are specified on the SURF line via the array called MATL_ID(IL,IC).
The argument IL is an integer indicating the layer index, starting at 1, the layer at the exterior boundary.
The argument IC is an integer indicating the component index. For example, MATL_ID(2,3)=’BRICK’
indicates that the third material component of the second layer is BRICK. In practice, the materials are often
listed as in the following example:

&MATL ID = 'INSULATOR'
CONDUCTIVITY = 0.041
SPECIFIC_HEAT = 2.09
DENSITY = 229. /

&SURF ID = 'BRICK WALL'
MATL_ID = 'BRICK','INSULATOR'
COLOR = 'RED'
BACKING = 'EXPOSED'
THICKNESS = 0.20,0.10 /

Without arguments, the parameter MATL_ID is assumed to be a list of the materials in multiple layers, with
each layer consisting of only a single material component.

When a set of SURF parameters is applied to the face of an OBST, the first MATL_ID defines the first
layer of solid material. The other MATL_IDs are applied in succession. If BACKING=’EXPOSED’, the last
MATL_ID is applied to the opposite face of the OBST, assuming that the OBST is zero or one grid cells thick.
If the OBST is thicker than one grid cell, then BACKING=’EXPOSED’ is not defined and it will be treated as
if the condition BACKING=’VOID’ was set. If in the example above, BRICK WALL was applied to the entire
OBST using SURF_ID, then when doing a heat transfer calculation from the +x face to the −x face, FDS
would consider the OBST to be BRICK followed by INSULATOR and the same for a heat transfer calculation
from the −x face to the +x face. To avoid this, specify a second SURF that has the reverse MATL_ID and use
SURF_ID6 to apply the two SURF definitions to opposite faces of the OBST.

Mixtures of solid materials within the same layer can be defined using the MATL_MASS_FRACTION

keyword. This parameter has the same two indices as the MATL_ID keyword. For example, if the brick layer
contains some additional water, the input could look like this:

&MATL ID = 'WATER'
CONDUCTIVITY = 0.60
SPECIFIC_HEAT = 4.19
DENSITY = 1000. /

&SURF ID = 'BRICK WALL'
MATL_ID(1,1:2) = 'BRICK','WATER'
MATL_MASS_FRACTION(1,1:2) = 0.95,0.05

1The maximum number of material layers is 20. The maximum number of material components is 20.
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MATL_ID(2,1) = 'INSULATOR'
COLOR = 'RED'
BACKING = 'EXPOSED'
THICKNESS = 0.20,0.10 / <--- for layers 1 and 2

In this example, the first layer of material, Layer 1, is composed of a mixture of brick and water. This is
given by the MATL_ID array which specifies Component 1 of Layer 1 to be brick, and Component 2 of
Layer 1 to be water. The mass fraction of each is specified via MATL_MASS_FRACTION. In this case, brick
is 95 %, by mass, of Layer 1, and water is 5 %.

It is important to notice that the components of the solid mixtures are treated as pure substances with no
voids. The density of the mixture is

ρ =

(
∑

i

Yi

ρi

)−1

(8.4)

where Yi are the material mass fractions and ρi are the material bulk densities defined on the MATL lines.
In the example above, the resulting density of the wall would be about 1553 kg/m3. The fact that the wall
density is smaller than the density of pure brick may be confusing, but can be explained easily. If the wall
can contain water, the whole volume of the wall can not be pure brick. Instead there are voids (pores) that
are filled with water. If the water is taken away, there is only about 1476 kg/m3 of brick left. To have a
density of 1600 kg/m3 for a partially void wall, a higher density should be used for the pure brick.

8.3.2 Thermal Properties

For any solid material, specify its thermal CONDUCTIVITY (W/(m ·K)), DENSITY (kg/m3), SPECIFIC_HEAT
(kJ/(kg ·K)), and EMISSIVITY (0.9 by default). Both CONDUCTIVITY and SPECIFIC_HEAT can be func-
tions of temperature. DENSITY and EMISSIVITY cannot. Temperature-dependence is specified using the
RAMP convention. As an example, consider marinite, a wall material suitable for high temperature applica-
tions:

&MATL ID = 'MARINITE'
EMISSIVITY = 0.8
DENSITY = 737.
SPECIFIC_HEAT_RAMP = 'c_ramp'
CONDUCTIVITY_RAMP = 'k_ramp' /

&RAMP ID='k_ramp', T= 24., F=0.13 /
&RAMP ID='k_ramp', T=149., F=0.12 /
&RAMP ID='k_ramp', T=538., F=0.12 /
&RAMP ID='c_ramp', T= 93., F=1.172 /
&RAMP ID='c_ramp', T=205., F=1.255 /
&RAMP ID='c_ramp', T=316., F=1.339 /
&RAMP ID='c_ramp', T=425., F=1.423 /

Notice that with temperature-dependent quantities, the RAMP parameter T means Temperature, and F is the
value of either the specific heat or conductivity. In this case, neither CONDUCTIVITY nor SPECIFIC_HEAT
is given on the MATL line, but rather the RAMP names.

The solid material can be given an ABSORPTION_COEFFICIENT (1/m) that allows the radiation to
penetrate and absorb into the solid. Correspondingly, the emission of the material is based on the internal
temperatures, not just the surface.
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8.3.3 Back Side Boundary Conditions

The layers of a solid boundary are listed in order from the surface. By default, if the obstruction is less than
or equal to one cell thick, then the innermost layer will be exposed to the air temperature on the back side.
If the obstruction is on the boundary of the domain or is more than one cell thick, it is assumed to back up
to an air gap at ambient temperature. For example a thin steel plate (i.e. thickness less than or equal to the
grid) would use the FDS predicted temperatures on either side of the plate for predicting heat transfer.

There are other back side boundary conditions that can be applied. One is to assume that the wall
backs up to an insulated material in which case no heat is lost to the backing material. The expression
BACKING=’INSULATED’ on the SURF line prevents any heat loss from the back side of the material. Use
of this condition means that you do not have to specify properties of the inner insulating material because it
is assumed to be perfectly insulated.

If the wall is assumed to back up to the room on the other side of the wall and you want FDS to calculate
the heat transfer through the wall into the space behind the wall, the attribute BACKING=’EXPOSED’ should
be listed on the SURF line. This feature only works if the wall is less than or equal to one mesh cell thick, and
if there is a non-zero volume of computational domain on the other side of the wall. Obviously, if the wall
is an external boundary of the domain, the heat is lost to an ambient temperature void. The same happens
if the back side gas cell cannot be found (in which case, the wall would not be one cell thick). This is the
default boundary conditions.

If the wall is assumed to always back up to the ambient, then the attribute BACKING=’VOID’ should be
set.

The back side emissivity of the surface can be controlled by specifying EMISSIVITY_BACK on the SURF
line. If not specified, the back side emissivity will be calculated during the simulations as a mass-weighted
sum of the MATL emissivities.

8.3.4 Initial and Back Side Temperature

By default, the initial temperature of the solid material is set to ambient (TMPA on the MISC line). Use
TMP_INNER on the SURF line to specify a different initial temperature of the solid. The layers of the surface
can have different initial temperatures. Also, the back side temperature boundary condition of a solid can
be set using the parameter TMP_BACK on the SURF line. TMP_BACK is not the actual back side surface
temperature, but rather the gas temperature to which the back side surface is exposed. This parameter has
no meaning for surfaces with BACKING=’EXPOSED’ or BACKING=’INSULATED’.

As an alternative to TMP_INNER one can also use RAMP_T_I to specify the name of a RAMP containing
a depth vs. temperature profile for the surface.

Note that the parameters TMP_INNER and TMP_BACK are only meaningful for solids with specified
THICKNESS and material properties (via the MATL_ID keyword).

8.3.5 Walls with Different Materials Front and Back

If you have an OBST that is one cell thick with gas cells on both sides (i.e., the obstruction is not at the edge
of the domain) and you apply the attribute BACKING=’EXPOSED’, then FDS calculates the heat conduction
through the entire THICKNESS, and it uses the gas phase temperature and heat flux on the front and back
sides for boundary conditions. A redundant calculation is performed on the opposite side of the obstruction.
FDS always applies a SURF to an obstruction by having the first layer be the exposed surface of the face
and the last layer as the opposite face. Take for example the SURF definition below and assume that the grid
spacing is 10 cm. On the -x side of the OBST, layer 1 will be MATERIAL A, layer 2 will be MATERIAL B,
and layer 3 will be the last MATERIAL A. On the +x side the SURF will be applied in the same manner.

74



&OBST XB=0.1,0.2,...., SURF_ID='SYMMETRIC'/
&SURF ID = 'SYMMETRIC'

COLOR = 'ANTIQUE WHITE'
BACKING = 'EXPOSED'
MATL_ID(1:3,1) = 'MATERIAL A','MATERIAL B','MATERIAL A'
THICKNESS(1:3) = 0.1,0.2,0.1 /

For example, take the SURF definition below and assume that the grid spacing is 10 cm. On the -x side
of the OBST, layer 1 will be MATERIAL A, layer 2 will be MATERIAL B, and layer 3 will be MATERIAL C.
On the +x side, the SURF will be applied in the same manner, layer 1 will be MATERIAL A, layer 2 will be
MATERIAL B, and layer 3 will be MATERIAL C. This means that both sides of the OBST will compute heat
transfer assuming MATERIAL A is the first layer.

&OBST XB=0.1,0.2,...., SURF_ID='NON-SYMMETRIC'/
&SURF ID = 'NON-SYMMETRIC'

COLOR = 'ANTIQUE WHITE'
BACKING = 'EXPOSED'
MATL_ID(1:3,1) = 'MATERIAL A','MATERIAL B','MATERIAL C'
THICKNESS(1:3) = 0.1,0.2,0.1 /

Therefore, if you apply the attribute BACKING=’EXPOSED’ on a SURF line that is applied to a zero
or one-cell thick obstruction, you should be careful of how you specify multiple layers. If the layering is
symmetric, the same SURF line can be applied to both sides. However, if the layering is not symmetric, you
must create two separate SURF lines and apply one to each side. For example, a hollow box column that is
made of steel and covered on the outside by a layer of insulation material and a layer of plastic on top of the
insulation material, would have to be described with two SURF lines like the following:

&SURF ID = 'COLUMN EXTERIOR'
COLOR = 'ANTIQUE WHITE'
BACKING = 'EXPOSED'
MATL_ID(1:3,1) = 'PLASTIC','INSULATION','STEEL'
THICKNESS(1:3) = 0.002,0.036,0.0063 /

&SURF ID = 'COLUMN INTERIOR'
COLOR = 'BLACK'
BACKING = 'EXPOSED'
MATL_ID(1:3,1) = 'STEEL','INSULATION','PLASTIC'
THICKNESS(1:3) = 0.0063,0.036,0.002 /

If, in addition, the insulation material and plastic are combustible, and their burning properties are specified
on the appropriate MATL lines, then you need to indicate which side of the column would generate the fuel
vapor. In this case, the steel is impermeable; thus you should add the parameter LAYER_DIVIDE=2.0 to
the SURF line labeled ’COLUMN EXTERIOR’ to indicate that fuel vapors formed by the heating of the two
first layers (’PLASTIC’ and ’INSULATION’) are to be driven out of that surface. You need to also specify
LAYER_DIVIDE=0.0 on the SURF line labeled ’COLUMN INTERIOR’ to indicate that no fuel vapors are
to driven into the interior of the column. In fact, values from 0.0 to 1.0 would work equally because the
material ’STEEL’ would not generate any fuel vapors.

By default, LAYER_DIVIDE is 0.5 times the number of layers for surfaces with EXPOSED backing, and
equal to the number of layers for other surfaces.
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8.3.6 Special Topic: Specified Internal Heat Source

The condensed phase heat conduction equation has a source term that describes the internal sources and
sinks of energy. There are three types of sources that contribute to this term: heats of reaction for the
pyrolysis (see Section 8.5), internal absorption and emission of radiation (see Section 8.5.7), and the source
specified by the user. An example of the case where specified heat source could be needed is the heating of
electrical cables due to internal current.

You can specify the internal source term for each layer of the surface using INTERNAL_HEAT_SOURCE

on the SURF line. Its units are kW/m3 and the default value is zero. In the example below, the cylindrical
surface describing a cable consists of an outer plastic layer and inner core of metal. The metal core is heated
with a power of 300 kW/m3.

&SURF ID = 'Cable'
THICKNESS = 0.002,0.008
MATL_ID(1,1) = 'PLASTIC'
MATL_ID(2,1) = 'METAL'
GEOMETRY = 'CYLINDRICAL'
LENGTH = 0.1
INTERNAL_HEAT_SOURCE = 0.,300. /

8.3.7 Special Topic: Non-Planar Walls and Targets

All obstructions in FDS are assumed to conform to the rectilinear mesh, and all bounding surfaces are
assumed to be flat planes. However, many objects, like cables, pipes, and ducts, are not flat. Even though
these objects have to be represented in FDS as “boxes,” you can still perform the internal heat transfer
calculation as if the object were really cylindrical or spherical. For example, the input lines:

&OBST XB=0.0,5.0,1.1,1.2,3.4,3.5, SURF_ID='CABLE' /
&SURF ID='CABLE', MATL_ID='PVC', GEOMETRY='CYLINDRICAL', THICKNESS=0.01 /

can be used to model a power cable that is 5 m long, cylindrical in cross section, 2 cm in diameter. The
heat transfer calculation is still one-dimensional; that is, it is assumed that there is a uniform heat flux
all about the object. This can be somewhat confusing because the cable is represented as an obstruction of
square cross section, with a separate heat transfer calculation performed at each face, and no communication
among the four faces. Obviously, this is not an ideal way to do solid phase heat transfer, but it does provide a
reasonable bounding surface temperature for the gas phase calculation. More detailed assessment of a cable
would require a two or three-dimensional heat conduction calculation, which is not included in FDS. Use
GEOMETRY=’SPHERICAL’ to describe a spherical object.

8.3.8 Special Topic: Solid Phase Numerical Gridding Issues

To compute the temperature and reactions inside the solids, FDS solves the one-dimensional heat transfer
equation numerically. The size of the mesh cells on the surface of the solid is automatically chosen using a
rule that makes the cell size smaller than the square root of the material diffusivity (k/ρc). By default, the
solid mesh cells increase towards the middle of the material layer and are smallest on the layer boundaries.

The default parameters are usually appropriate for simple heat transfer calculations but sometimes the
use of pyrolysis reactions makes the temperatures and burning rate fluctuate. Adjustments may also be
needed in case of extremely transient heat transfer situations. The numerical accuracy and stability of the
solid phase solution may be improved by one of the following methods:
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Make the mesh density more uniform inside the material by setting STRETCH_FACTOR(NL)=1. on the
SURF line. This will generate a perfectly uniform mesh for layer number NL. (This happens automati-
cally if the layer contains one or more reacting materials.) Values between 1 and 2 give different levels
of stretching. Note that STRETCH_FACTOR needs to be specified for all the layers.

Make the mesh cells smaller by setting CELL_SIZE_FACTOR less than 1.0. For example, a value of 0.5
makes the mesh cells half the size. The scaling always applies to all layers.

Improve the time resolution by setting WALL_INCREMENT=1 on the TIME line. This forces the solid phase
temperatures to be solved on every time step.

Limit the number of cells in a layer by setting N_LAYER_CELLS_MAX. This array input has a default of
1000.

If all the material components of the surface are reacting, and the pyrolysis reactions have no solid residue,
the thickness of the surface is going to shrink when the surface reacts. Each of the shrinking layers will
vanish from the computation when its thickness gets smaller than a prescribed limiting value. This value
can be set on a SURF line via MINIMUM_LAYER_THICKNESS keyword, defaulting to 1×10−6 m. When all
the material of a shrinking surface is consumed but BURN_AWAY is not prescribed, the surface temperature
is set to TMP_BACK, convective heat flux to zero and burning rate to zero.

See Section 8.6 for ways to check and improve the accuracy of the solid phase calculation.

8.3.9 Solid Heat Transfer 3D (Beta)

The conduction model described in the previous sections does not account for lateral heat transfer within
a solid. Further, if a solid is immersed within a gas phase region it must be only one cell thick in order
to communicate with neighboring gas phase regions for surface boundary conditions. These issues are
addressed by the solid heat transfer 3D (HT3D) method, currently in beta testing in FDS.

HT3D solves the 3D heat equation within an OBST region of the domain. You may connect multiple
OBST regions. The thermal properties of the material are uniform within a cell and are taken from a MATL
tied to the OBST line. If you want layers of material, you must use a different OBST for each layer, and each
layer much be at least one cell thick. The model uses the underlying gas phase grid resolution and explicit
time integration that subcycles if necessary to achieve a stable solution to the heat equation. The advantage
of using the OBST framework is that things like parallel capabilities and output methods (DEVC and SLCF)
are automatically available without additional code requirements. HT3D is not currently hooked up to the
pyrolysis model.

The method is invoked by adding HT3D=.TRUE. to an OBST line. The OBST line must then also have
a MATL_ID associated. If two-way coupling with the gas phase is desired, then the SURF associated with
the OBST should also have HT3D=.TRUE.. Note that if the FDS time step is too large then the accuracy
of two-way coupling can be poor. You may need to set DT on the TIME line to be on the same order as
the Von Neumann time step restriction based on the thermal diffusivity, α = k/(ρc), of the solid (see also
Sec. 6.4.9),

δ t <
[

2α
(

1
δx2 +

1
δy2 +

1
δ z2

)]−1

(8.5)

Below is an example input file section:

&MATL ID='steel', .../
&SURF ID='s1', HT3D=.TRUE./
&OBST XB=..., HT3D=.TRUE., MATL_ID='steel', SURF_ID='s1'/
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8.4 Simple Pyrolysis Models

FDS has several approaches for describing the pyrolysis of solids and liquids. The approach to take de-
pends largely on the availability of material properties and the appropriateness of the underlying pyrolysis
model. Note that all pyrolysis models in FDS require that you explicitly define the gas phase reaction. See
Chapter 13 for details.

8.4.1 A Gas Burner with a Specified Heat Release Rate

Solids and liquid fuels can be modeled by specifying their relevant properties via the MATL namelist group.
However, if you simply want to specify a fire of a given heat release rate (HRR), you need not specify any
material properties. A specified fire is basically modeled as the ejection of gaseous fuel from a solid surface
or vent. This is essentially a burner, with a specified Heat Release Rate Per Unit Area, HRRPUA, in units of
kW/m2. For example

&SURF ID='FIRE', HRRPUA=500. /

applies 500 kW/m2 to any surface with the attribute SURF_ID=’FIRE’. See the discussion of time-dependent
quantities in Chapter 11 to learn how to ramp the heat release rate up and down.

An alternative to HRRPUA with the exact same functionality is MLRPUA, except this parameter specifies
the Mass Loss Rate of fuel gas Per Unit Area in kg/(m2 · s). Do not specify both HRRPUA and MLRPUA on
the same SURF line. Neither of them can be used if the model contains multiple reactions.

8.4.2 Special Topic: A Radially-Spreading Fire

Sometimes it is desired that a fire spread radially at some specified rate. Rather than trying to obtain material
properties to directly model the ignition and spread of the fire, you can specify the fire spread rate directly.
First, you need to add a SURF line with a specified heat release rate, HRRPUA, and an optional time history
parameter, RAMP_Q or TAU_Q (see Section 11.1). Then, you must specify XYZ and SPREAD_RATE on either
a VENT or the same SURF line. The fire is directed to start at the point XYZ and spread radially at a rate of
SPREAD_RATE (m/s). The optional ramp-up of the HRR begins at the time when the fire arrives at a given
point. For example, the lines

&SURF ID='FIRE', HRRPUA=500.0, RAMP_Q='fireramp' /
&RAMP ID='fireramp', T= 0.0, F=0.0 /
&RAMP ID='fireramp', T= 1.0, F=1.0 /
&RAMP ID='fireramp', T=30.0, F=1.0 /
&RAMP ID='fireramp', T=31.0, F=0.0 /
&VENT XB=0.0,5.0,1.5,9.5,0.0,0.0, SURF_ID='FIRE', XYZ=1.5,4.0,0.0, SPREAD_RATE=0.03 /

create a rectangular area via the VENT line on which the fire starts at the point (1.5,4.0,0.0) and spreads out-
wards at a rate of 0.03 m/s. Each surface cell burns for 30 s as the fire spreads outward, creating a widening
ring of fire. Note that the RAMP_Q is used to turn the burning on and off to simulate the consumption of fuel
as the fire spreads radially. It should not be used to mimic a t-squared fire growth rate – the whole point of
the exercise is to mimic this curve in a more natural way. Eventually, the fire goes out as the ring grows past
the boundary of the rectangle. Some trial and error is probably required to find the SPREAD_RATE that leads
to a desired time history of the heat release rate.

If you desire that the fire spread over an area that is not confined to a flat plane, specify XYZ and
SPREAD_RATE on the SURF line directly and then apply that SURF line to the obstructions or particles over
which you want the fire to spread. This technique can be useful for simulating the spread of fire through
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a cluttered space when the detailed properties of the materials are unknown, or when the uncertainties
associated with modeling the pyrolysis of the solid fuels directly are too great.

If the starting time of the simulation, T_BEGIN, is not zero, be aware that the default start time of the
radially spreading fire is T_BEGIN, not zero. This is also true of TAU_Q, but it is not true of RAMP_Q. Because
this might be confusing, if you start the calculation at a time other than zero, do a quick test to ensure that
the ramps or fire spread behave as expected.

8.4.3 Solid Fuels that Burn at a Specified Rate

Real objects, like furnishings, office equipment, and so on, are often difficult to describe via the SURF and
MATL parameters. Sometimes the only information about a given object is its bulk thermal properties, its
“ignition” temperature, and its subsequent burning rate as a function of time from ignition. For this situation,
add lines similar to the following:

&MATL ID = 'stuff'
CONDUCTIVITY = 0.1
SPECIFIC_HEAT = 1.0
DENSITY = 900.0 /

&SURF ID = 'my surface'
COLOR = 'GREEN'
MATL_ID = 'stuff'
HRRPUA = 1000.
IGNITION_TEMPERATURE = 500.
RAMP_Q = 'fire_ramp'
THICKNESS = 0.01 /

&RAMP ID='fire_ramp', T= 0.0, F=0.0 /
&RAMP ID='fire_ramp', T= 10.0, F=1.0 /
&RAMP ID='fire_ramp', T=310.0, F=1.0 /
&RAMP ID='fire_ramp', T=320.0, F=0.0 /

An object with surface properties defined by ’my surface’ shall burn at a rate of 1000 kW/m2 after a
linear ramp-up of 10 s following its “ignition” when its surface temperature reaches 500 ◦C. Burning shall
continue for 5 min, and then ramp-down in 10 s. Note that the time T in the RAMP means time from ignition,
not the time from the beginning of the simulation. Note also that now the “ignition temperature” is a surface
property, not material property.

After the surface has ignited, the heat transfer into the solid is still calculated, but there is no coupling
between the burning rate and the surface temperature. As a result, the surface temperature may increase too
much. To account for the energy loss due to the vaporization of the solid fuel, HEAT_OF_VAPORIZATION
can be specified for the surface. For example, when using the lines below, the net heat flux at the material
surface is reduced by a factor 1000 kJ/kg times the instantaneous burning rate.

&SURF ID = 'my surface'
COLOR = 'GREEN'
MATL_ID = 'stuff'
HRRPUA = 1000.
IGNITION_TEMPERATURE = 500.
HEAT_OF_VAPORIZATION = 1000.
RAMP_Q = 'fire_ramp'
THICKNESS = 0.01 /
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The parameters HRRPUA, IGNITION_TEMPERATURE, and HEAT_OF_VAPORIZATION are all telling FDS
that you want to control the burning rate yourself, but you still want to simulate the heating up and “ignition”
of the fuel. When these parameters appear on the SURF line, they are acting in concert. If HRRPUA appears
alone, the surface will begin burning at the start of the simulation, like a piloted burner. The addition of
an IGNITION_TEMPERATURE delays burning until your specified temperature is reached. The addition of
HEAT_OF_VAPORIZATION tells FDS to account for the energy used to vaporize the fuel. For any of these
options, if a MATL line is invoked by a SURF line containing a specified HRRPUA, then that MATL ought to
have only thermal properties. The MATL line should have no reaction parameters, product yields, and so on,
like those described in the previous sections. By specifying HRRPUA, you are controlling the burning rate
rather than letting the material pyrolyze based on the conditions of the surrounding environment.

8.5 Complex Pyrolysis Models

This section describes the parameters that describe the reactions that occur within solid materials when they
are burning. It is strongly recommended before reading this section that you read some background material
on solid phase pyrolysis, for example “Thermal Decomposition of Polymers,” by Hirschler and Morgan, or
“Flaming Ignition of Solid Fuels,” by Torero, both of which are in the 4th edition of the SFPE Handbook of
Fire Protection Engineering.

8.5.1 Reaction Mechanism

A solid surface in FDS may consist of multiple layers with multiple material components per layer. The ma-
terial components are described via MATL lines and are specified on the SURF line that describes the structure
of the solid. Each MATL can undergo several reactions that may occur at different temperatures. It may not
undergo any – it may just heat up. However, if it is to change form via one or more reactions, designate the
number of reactions with the integer N_REACTIONS. It is very important that you designate N_REACTIONS
or else FDS will ignore all parameters associated with reactions. Note that experimental evidence of multi-
ple reactions does not imply that a single material is undergoing multiple reactions, but rather that multiple
material components are undergoing individual reactions at distinct temperatures. Currently, the maximum
number of reactions for each material is 10 and the chain of consecutive reactions may contain up to 20
steps.

For a given material, the jth reaction can produce other solid materials whose names are designated with
MATL_ID(i,j), and gas species whose names are designated with SPEC_ID(i,j). Note that the index,
i, runs from 1 to the number of material or gaseous species. This index does not correspond to the order in
which the MATL or SPEC lines are listed in the input file. For a given reaction, the relative amounts of solid or
gaseous products are input to FDS via the yields: NU_MATL(i,j) and NU_SPEC(i,j), respectively. The
yields are all zero by default. If NU_MATL(i,j) or NU_SPEC(i,j) is non-zero, then you must indicate
what the solid residue is via MATL_ID(j), the ID of another MATL that is also listed in the input file.
Ideally, the sum of the yields should add to 1, meaning that the mass of the reactant is conserved. However,
there are times when it is convenient to have the yields sum to something less than one. For example, the
spalling or ablation of concrete can be described as a “reaction” that consumes energy but does not produce
any “product” because the concrete is assumed to have either fallen off the surface in chunks or pulverized
powder. The concrete’s mass is not conserved in the model because it has essentially disappeared from that
particular surface.

For consistency, the HEAT_OF_COMBUSTION(j) can also be specified for each reaction, j. These values
are used only if the corresponding heats of combustion for the gaseous species are greater than zero.

In the example below, the pyrolysis of wood is included within a simulation that uses a finite-rate
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reaction instead of the default mixing-controlled model. Notice in this case that all of the gas species
(except for the background nitrogen) are explicitly defined, and as a result, FDS needs to be told explicitly
what gaseous species are produced by the solid phase reactions. In this case, 82 % of the mass of wood is
converted to gaseous ’PYROLYZATE’ and 18 % is converted to solid ’CHAR’.

&SPEC ID = 'PYROLYZATE', MW=53.6 /
&SPEC ID = 'OXYGEN', MASS_FRACTION_0 = 0.23 /
&SPEC ID = 'WATER VAPOR' /
&SPEC ID = 'CARBON DIOXIDE' /

&MATL ID = 'WOOD'
EMISSIVITY = 0.9
CONDUCTIVITY = 0.2
SPECIFIC_HEAT = 1.3
DENSITY = 570.
N_REACTIONS = 1
A(1) = 1.89E10
E(1) = 1.51E5
N_S(1) = 1.0
MATL_ID(1,1) = 'CHAR'
NU_MATL(1,1) = 0.18
SPEC_ID(1:4,1) = 'PYROLYZATE','OXYGEN','WATER VAPOR','CARBON DIOXIDE'
NU_SPEC(1:4,1) = 0.82,0,0,0
HEAT_OF_REACTION(1) = 430.
HEAT_OF_COMBUSTION(1) = 14500. /

Note that the indices associated with the parameters are not needed in this case, but they are shown to em-
phasize that, in general, there can be multiple reactions with corresponding kinetic parameters and products.

8.5.2 Reaction Rates

For each reaction that each material component undergoes you must specify kinetic parameters of the reac-
tion rate. The general evolution equation for a material undergoing one or more reactions is:

dYs,i

dt
=−

Nr,i

∑
j=1

ri j +
Nm

∑
i′=1

Nr,i′

∑
j=1

νs,i′ j ri′ j (i′ 6= i) (8.6)

where

ri j = Ai j Y ns,i j
s,i exp

(
−

Ei j

RTs

)
X

nO2 ,i j

O2
; Ys,i =

(
ρs,i

ρs(0)

)
(8.7)

The term, ri j, defines the rate of reaction at the temperature, Ts, of the ith material undergoing its jth reaction.
The second term on the right of the equation (8.6) represents the contributions of other materials producing
the ith material as a residue with a yield of νs,i′ j. This term is denoted by NU_MATL(:,j) on the i′-th MATL

line. ρs,i is the density of the ith material component of the layer, defined as the mass of the ith material
component divided by the volume of the layer. ρs(0) is the initial density of the layer. Thus, Ys,i = ρs,i/ρs(0)
is a quantity that increases if the ith material component is produced as a residue of some other reaction, or
decreases if the ith component decomposes. If the layer is composed of only one material, then ρs,i/ρs(0) is
initially 1. ns,i j is the reaction order and prescribed under the name N_S(j), and is 1 by default. If the value
of ns is not known, it is a good starting point to assume it is 1.

The pre-exponential factor, Ai j, is prescribed under the name A(j) on the MATL line of the ith material,
with units of s−1. Ei j, the activation energy, is prescribed via E(j) in units of kJ/kmol. Remember that
1 kcal is 4.184 kJ, and be careful with factors of 1000. For a given reaction, specify both A and E, or neither.

81



Do not specify only one of these two parameters. Typically, these parameters only have meaning when both
are derived from a common set of experiments, like TGA (thermo-gravimetric analysis).

The fourth term of the reaction rate equation (8.7) can be used to simulate oxidation reactions. If the
heterogeneous reaction order nO2,i j is greater than zero, the reaction rate is affected by the local oxygen
volume fraction, XO2 . It is calculated from the gas phase (first grid cell) oxygen volume fraction XO2,g by
assuming simultaneous diffusion and consumption so that the concentration profile is in equilibrium, and
the concentration at depth x is given by

XO2(x) = XO2,g exp(−x/Lg) (8.8)

where Lg is the gas diffusion length scale. nO2,i j is prescribed under the name N_O2(j) on the MATL line of
the ith material. It is zero by default. Lg is prescribed under the name GAS_DIFFUSION_DEPTH(j), and it
is 0.001 m by default.

Estimating Kinetic Parameters

It is very important to keep in mind that the kinetic constants, A and E, are not available for most real
materials. However, there is a way to model such materials using a simplified reaction scheme. The key
assumption is that the material components can undergo only one reaction, at most. If, for example, the
material undergoes three distinct reactions, there must be at least three material components, each of which
undergoes one reaction. If there is an additional residue left over, then a fourth material component is
needed.

In lieu of specifying A and E, there are several parameters that can be used by FDS to derive effective
values, the most important of which is the REFERENCE_TEMPERATURE (◦C). To understand this parameter,
consider the plot shown in Fig. 8.1. These curves represent the results of a hypothetical TGA experiment
in which a single component material undergoes a single reaction that converts the solid into a gas. The
Mass Fraction (blue curve) is the normalized density of the material (Ys) which decreases as the sample
is slowly heated, in this case at a rate of 5 K/min. The Reaction Rate (green curve) is the rate of change
of the mass fraction as a function of time (−dYs/dt). Where this curve peaks is referred to in FDS as
the REFERENCE_TEMPERATURE.2 Note that the REFERENCE_TEMPERATURE is not the same as an ignition
temperature, nor is it necessarily the surface temperature of the burning solid. Rather, it is simply the
temperature at which the mass fraction of the material decreases at its maximum rate within the context of
a TGA or similar experimental apparatus. Although you cannot specify an ignition temperature, you can
specify a threshold temperature, see Section 8.5.6 for details.

The kinetic constants for component i of a multi-component solid are given by3:

Ei,1 =
erp,i

Ys,i(0)
RT 2

p,i

Ṫ
; Ai,1 =

erp,i

Ys,i(0)
eE/RTp,i (8.9)

where Tp,i and rp,i/Ys,i(0) are the reference temperature and rate, respectively. The REFERENCE_RATE is the
reaction rate, in units of s−1, at the given REFERENCE_TEMPERATURE divided by the mass fraction, Ys,i(0),
of material in the original sample undergoing the reaction. For a single component, single reaction material,
Ys,1(0) = 1. The HEATING_RATE (Ṫ ) is the rate at which the temperature of the TGA (or equivalent) test
apparatus was increased. It is input into FDS in units of K/min (in the formula, it is expressed in K/s). Its
default value is 5 K/min. In Fig. 8.1, the area under the green curve (Reaction Rate) is equal to the heating
rate (in units of K/s).

2The term “reference temperature” is used simply to maintain backward compatibility with earlier versions of FDS.
3These formulas have been derived from an analysis that considers a first-order reaction. When using the proposed method, do

not specify non-unity value for the reaction order N_S on the MATL line.
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dYs

dt
=−AYs exp(−E/RTs) Ys(0) = 1

Tp = 300 ◦C

rp = 0.002 s−1

Ṫ = 5 K/min

νs = 0

Figure 8.1: The blue curve represents the normalized mass, Ys = ρs/ρs(0), of a solid material undergoing
heating at a rate of 5 K/min. The green curve represents the reaction rate,−dYs/dt. The ordinary differential
equation that describes the transformation is shown at right. Note that the parameters Tp, rp, and νs represent
the “reference” temperature, reaction rate, and residue yield of the single reaction. From these parameters,
values of A and E can be estimated using the formulae in (8.9). The full set of parameters for this case are
listed in pyrolysis_1.fds.

There are many cases where it is only possible to estimate the REFERENCE_TEMPERATURE (Tp) of a par-
ticular reaction because micro-scale calorimetry data is unavailable. In such cases, an additional parameter
can be specified to help fine tune the shape of the reaction rate curve, assuming some sort of measurement or
estimate has been made to indicate at what temperature, and over what temperature range, the reaction takes
place. The PYROLYSIS_RANGE (∆T ) is the approximate width (in degrees Celsius or Kelvin) of the green
curve, assuming its shape to be roughly triangular. Its default value is 80 ◦C. Using these input parameters,
an estimate is made of the peak reaction rate, rp,i, with which Ei,1, then Ai,1, are calculated.

rp,i

Ys,i(0)
=

2 Ṫ
∆T

(1−νs,i) (8.10)

The parameter, νs,i, is the yield of solid residue.
When in doubt about the values of these parameters, just specify the REFERENCE_TEMPERATURE.

Note that FDS will automatically calculate A and E using the above formulae. Do not specify A and
E if you specify the REFERENCE_TEMPERATURE, and do not specify PYROLYSIS_RANGE if you specify
REFERENCE_RATE. For the material decomposition shown in Fig. 8.1, the MATL would have the form:

&MATL ID = 'My Fuel'
...
N_REACTIONS = 1
SPEC_ID(1,1) = '...'
NU_SPEC(1,1) = 1.
REFERENCE_TEMPERATURE(1) = 300.
REFERENCE_RATE(1) = 0.002
HEATING_RATE(1) = 5.
HEAT_OF_COMBUSTION(1) = ...
HEAT_OF_REACTION(1) = ... /

Note that the indices have been added to the reaction parameters to emphasize the fact that these param-
eters are stored in arrays of length equal to N_REACTIONS. If there is only one reaction, you need not
include the (1), but it is a good habit to get into. Note also that if the default combustion model is
used, you can denote that the reaction produces fuel gas using the appropriate SPEC_ID. Note also that
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the HEAT_OF_COMBUSTION is the energy released per unit mass of fuel gas that mixes with oxygen and
combusts. This has nothing to do with the pyrolysis process, so why is it specified here? The answer is that
there can be only one gas phase reaction of fuel and oxygen in FDS, but there can be dozens of different
materials and dozens of solid phase reactions. To ensure that the fuel vapors from different materials com-
bust to produce the proper amount of energy, it is very important to specify a HEAT_OF_COMBUSTION for
each material. That way, the mass loss rate of fuel gases is automatically adjusted so that the effective mass
loss rate multiplied by the single, global, gas phase heat of combustion produces the expected heat release
rate. If, for example, the HEAT_OF_COMBUSTION specified on the REAC line is twice that specified on the
MATL line, the mass of contained within wall cell will be decremented by that determined by the pyrolysis
model, but the mass added to gas phase would be reduced by 50 %. A different value of heat of combustion
can be specified for each reaction, j, via the parameter HEAT_OF_COMBUSTION(j).

Modeling Upholstered Furnishings

The example input files called Fires/couch.fds and Fires/room_fire.fds demonstrate a simple way
to model upholstered furniture. In residential fires, upholstered furniture makes up a significant fraction of
the combustible load. A single couch can generate several megawatts of energy and sometimes lead to
compartment flashover. Modeling a couch fire requires a simplification of its structure and materials. At the
very least, we want the upholstery to be modeled as a layer of fabric covering polyurethane foam. We need
the thermal properties of each, along with estimates of the “reference” temperatures as described above. The
foam might be described as follows:

&MATL ID = 'FOAM'
SPECIFIC_HEAT = 1.0
CONDUCTIVITY = 0.05
DENSITY = 40.0
N_REACTIONS = 1
SPEC_ID = 'FUEL'
NU_SPEC = 1.
REFERENCE_TEMPERATURE = 350.
HEAT_OF_REACTION = 1500.
HEAT_OF_COMBUSTION = 30000. /

Note that these properties are completely made up. Both the fabric and the foam decompose into fuel gases
via single-step reactions. The fuel gases from each have different composition and heats of combustion.
FDS automatically adjusts the mass loss rate of each so that the “effective” fuel gas is that which is specified
on the REAC line. Figure 8.2 shows the fire after 10 min. Only the reaction zone of the fire is shown; the
smoke is hidden so that you can see the fire progressing along the couch.

8.5.3 Shrinking and swelling materials

Many practical materials change in thickness during the thermal reactions. For example:

• Non-charring materials will shrink as material is removed from the condensed phase to the gas phase.

• Porous materials like foams would shrink when the material melts and forms a non-porous layer.

• Some charring materials swell, i.e., get thicker, when a porous char layer is formed.

• Intumescent fire protection materials would swell significantly, creating an insulating layer.
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Figure 8.2: Output of couch test case showing fire on the couch at 10 min.

In FDS, the layer thickness is updated according to the ratio of the instantaneous material density and the
density of the material in its pure form, i.e., the DENSITY on the MATL line. In cases involving several
material components, the amount of swelling and shrinking is determined by the maximum and sum of
these ratios, respectively. In mathematical terms, this means that in each time step the size of each condensed
phase cell is changed according to the ratio δ

δ =

maxi

(
ρs,i
ρi

)
if maxi

(
ρs,i
ρi

)
≥ 1

∑i

(
ρs,i
ρi

)
if maxi

(
ρs,i
ρi

)
< 1

(8.11)

For example, if the original material with a DENSITY of 500 kg/m3 is completely converted into a residue
with a DENSITY of 1000 kg/m3, the thickness of the material layer will be half of the original.

You can prevent shrinking by setting ALLOW_SHRINKING to .FALSE. on the MATL line. You can pre-
vent swelling by specifying ALLOW_SWELLING to .FALSE. on the MATL line. By default, these flags are
true. Shrinking/swelling does not take place if any of the materials with non-zero density has the corre-
sponding flag set to false.
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8.5.4 Multiple Solid Phase Reactions

The solid phase reaction represented by Fig. 8.1 is fairly simple – a single, homogeneous material is heated
and gasified completely. In general, real materials are not so simple. First, they consist of more than one
material component, each of which can react over a particular temperature interval, and some of which leave
behind a solid residue. Some material components may even undergo multiple reactions that form differ-
ent residues, like woods that form various amounts of tar, char, and ash, depending on the rate of heating.
Figure 8.3 demonstrates a more complicated material than the one previously described. It is a hypothetical
material that contains 10 % (by mass) water and 90 % solid material. The water evaporates in the neighbor-
hood of 100 ◦C and the solid pyrolyzes in the neighborhood of 300 ◦C, leaving 20 % of its mass behind in
the form of a solid residue. The full set of parameters for this case are listed in pyrolysis_2.fds.
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dYs,1

dt
=−A1,1 Ys,1 exp(−E1,1/RTs) Ys,1(0) = 0.1

dYs,2

dt
=−A2,1 Ys,2 exp(−E2,1/RTs) Ys,2(0) = 0.9

dYs,3

dt
=−νs,2,1

dYs,2

dt
Ys,3(0) = 0.0

Tp,1,1 = 100+273 K Tp,2,1 = 300+273 K

rp,1,1 = 0.0016 s−1 rp,2,1 = 0.0012 s−1

νs,1,1 = 0 νs,2,1 = 0.2

Ṫ = 5 K/min

Figure 8.3: The blue curve represents the combined mass fraction, ∑Ys,i, and the green curve the net reaction
rate, −d/dt(∑Ys,i), for a material that contains 10 % water (by mass) that evaporates at a temperature of
100 ◦C, and 90 % solid material that pyrolyzes at 300 ◦C, leaving a 20 % (by mass) residue behind. Note
that the numbered subscripts refer to the material component and the reaction, respectively. In this case,
there are three material components, and the first two each undergo a single reaction. The third material
component is formed as a residue of the reaction of the second material. The system of ordinary differential
equations that governs the transformation of the materials is shown at right.

8.5.5 The Heat of Reaction

Equation (8.7) describes the rate of the reaction as a function of temperature. Most solid phase reactions
require energy; that is, they are endothermic. The amount of energy consumed, per unit mass of reactant
that is converted into reaction products, is specified by the HEAT_OF_REACTION(j). Technically, this is
the enthalpy difference between the products and the reactant. A positive value indicates that the reaction
is endothermic; that is, the reaction takes energy out of the system. Usually the HEAT_OF_REACTION is
accurately known only for simple phase change reactions like the vaporization of water. For other reactions,
it must be determined empirically (e.g., by thermo-gravimetric analysis).

8.5.6 Special Topic: The “Threshold” Temperature

In FDS, the reaction rate expression in Eq. (8.7) includes an optional term:

ri j = Ai j Y ns,i j
s,i exp

(
−

Ei j

RTs

)
max

[
0,Sthr,i j(Ts−Tthr,i j)

]nt,i j (8.12)
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Tthr,i j is an optional “threshold” temperature that allows the definition of non-Arrhenius pyrolysis functions
and ignition criteria, and is prescribed by THRESHOLD_TEMPERATURE(j). Sthr,i j is the “threshold direction”
that allows the triggering of reaction when temperature gets “above” Tthr,i j (Sthr,i j = +1) or “below” Tthr,i j
(Sthr,i j = −1). nt, j is prescribed under the name N_T(j) and Sthr,i j under THRESHOLD_SIGN. By default,
Tthr,i j is -273.15 degrees Celsius, nt, j is zero and Sthr,i j = +1; thus, the last term of Equation 8.12 does not
affect the pyrolysis rate. The term can be used to describe a threshold temperature for the pyrolysis reaction
by setting Tthr,i j and nt, j = 0. Then the term is equal to 0 at temperatures below Tthr,i j and 1 at temperatures
above.

The threshold temperature can be used to simulate simple phase change reactions, such as melting and
freezing. To make the reaction rate controlled by available energy, i.e., not kinetics, another optional term
should be included in the reaction rate formula

ri j = Ai j
1

Hr,i j∆t
max

[
0,Sthr,i j(Ts−Tthr,i j)

]nt,i j (8.13)

This form of reaction rate can be implemented by setting a logical parameter PCR(j)=.TRUE.. The pre-
exponental factor Ai j should then be given a value that is close or slightly smaller than the specific heat
(kJ/(kg ·K)) of the material mixture at phase change temperature.

The input file water_ice_water.fds demonstrates the use of the “threshold” temperature. A small
amount of liquid water at 10 ◦C is cooled down to -10 ◦C in 10 min, and then heated up again to 10 ◦C. The
concentration of the liquid water as a function of temperature is plotted in Fig. 8.4. The cooling phase is
indicated by the blue line and heating phase by the red line.
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Figure 8.4: Freezing and melting of water.

8.5.7 Liquid Fuels

For a liquid fuel, the thermal properties are similar to those of a solid material, with a few exceptions. The
evaporation rate of the fuel is governed by the mass transfer number (see FDS Technical Reference Guide
for details). The properties of a liquid fuel are given on the MATL line:

&MATL ID = 'ETHANOL LIQUID'
EMISSIVITY = 1.
NU_SPEC = 0.97
SPEC_ID = 'ETHANOL'
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HEAT_OF_REACTION = 836.98
CONDUCTIVITY = 0.17
SPECIFIC_HEAT = 2.4398
DENSITY = 789.
BOILING_TEMPERATURE = 78.5
ABSORPTION_COEFFICIENT = 1534.3 /

The inclusion of BOILING_TEMPERATURE on the MATL line tells FDS to use its liquid pyrolysis model.
It also automatically sets N_REACTIONS=1, that is, the only “reaction” is the phase change from liquid
to gaseous fuel. Thus, HEAT_OF_REACTION in this case is the latent heat of vaporization. The gaseous
fuel yield, NU_SPEC, is 0.97 instead of 1 to account for impurities in the liquid that do not take part in the
combustion process.

The thermal conductivity, density and specific heat are used to compute the loss of heat into the liquid
via conduction using the same one-dimensional heat transfer equation that is used for solids. Obviously, the
convection of the liquid is important, but is not considered in the model.

Note also the ABSORPTION_COEFFICIENT for the liquid. This denotes the absorption in depth of
thermal radiation. Liquids do not just absorb radiation at the surface, but rather over a thin layer near the
surface. Its effect on the burning rate is significant.

8.5.8 Fuel Burnout

The thermal properties of a solid or liquid fuel determine the length of time for which it can burn. In general,
the burnout time is a function of the mass loss rate, ṁ′′, the density, ρs, and the layer thickness, δs:

tb =
ρs δs

ṁ′′
(8.14)

However, each type of pyrolysis model handles fuel burnout in a slightly different way. These differences
will be highlighted in the individual sections below.

Solid Fuel Burnout

If a heat release rate RAMP function is not included for a solid fuel that burns at a specified rate, the surface
will continue to burn at the specified rate indefinitely with no fuel burnout. If detailed heat release rate versus
time data is not available, you can estimate the burnout time for a surface using the heat of combustion, ∆H,
material density, ρs, material thickness, δs, and HRRPUA, q̇′′f :

tb =
ρs δs ∆H

q̇′′f
(8.15)

Use the RAMP function to stop the burning once the calculated burnout time is reached.
The burnout time of a reacting solid fuel is calculated automatically by FDS based on the layer THICKNESS,

component DENSITY, and the calculated burning rate.

Liquid Fuel Burnout

The burnout time of a liquid fuel is calculated automatically based on the liquid layer THICKNESS, liquid
DENSITY, and the calculated burning rate.
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Special topic: Making Fuels Disappear

If a burning object is to disappear from the simulation once it is consumed, set BURN_AWAY=.TRUE. on the
corresponding SURF line. The solid object disappears from the calculation cell by cell, as the mass contained
within each solid cell is consumed either by the pyrolysis reactions or by the prescribed HRR. The following
issues should be kept in mind when using BURN_AWAY:

• For surfaces with prescribed HRR (HRRPUA) or prescribed mass loss rate (MLRPUA) AND thermally
thick heat conduction, the mass flux is affected by the heats of combustion defined for the gas phase
reaction and the first listed material (MATL) component.

• Use BURN_AWAY parameter cautiously. If an object has the potential of burning away, a significant
amount of extra memory has to be set aside to store additional surface information as the mesh cells
disappear.

• If BURN_AWAY is prescribed, the SURF should be applied to the entire object, not just a face of the object
because it is unclear how to handle edges of solid obstructions that have different SURF_IDs on different
faces.

• If the volume of the obstruction changes because it has to conform to the uniform mesh, FDS does not
adjust the burning rate to account for this as it does with various quantities associated with areas, like
HRRPUA.

• A parameter called BULK_DENSITY (kg/m3) can be applied to the OBST rather than the SURF line.
This parameter is used to determine the combustible mass of the solid object. The calculation uses
the user-specified object dimensions, not those of the mesh-adjusted object. This parameter over-
rides all other parameters from which a combustible mass would be calculated. Note that without a
BULK_DENSITY specified, the total amount of mass burned will depend upon the grid resolution. The
use of the BULK_DENSITY parameter ensures a specific fuel mass per unit volume that is independent of
the grid resolution. Note that in the event that the solid phase reaction involves the production of solid
residue (like char or ash), the BULK_DENSITY refers to the mass of the solid that is converted to gas
upon reaction.

• The mass of the object is based on the densities of all material components (MATL), but it is only con-
sumed by mass fluxes of the known species. If the sum of the gaseous yields is less than one, it will take
longer to consume the mass.

Simple examples demonstrating how solid fuels can be forced to disappear from the domain are labeled
Fires/box_burn_away. These are examples of a solid block of solid material that is pyrolyzed until it
is completely consumed. The heat flux is generated by placing hot surfaces around the box. There is no
combustion. In the first example, box_burn_away1, the released gas is (’METHANE’), and in the second
example, box_burn_away2, it is an additional species called ’GAS’. In the third and fourth examples
box_burn_away3 and box_burn_away4, the released gas is fuel but the pyrolysis rate is specified. In the
fourth case, the heat of combustion for the foam material is set different from that of the gas, with a ratio of
0.75. The properties of the solid material were chosen simply to assure a quick calculation. The objective
of the test is to check that the released mass and the integrated burning rate are consistent with the material
properties of the block. The block is 0.4 m on a side, with a density of 20 kg/m3. The integrated densities
of the pyrolysis product gases (written to box_burn_away#_devc.csv), as well as the integrated burning
rate (written to box_burn_away#_hrr.csv) at the end of the 30 s calculation ought to be:

(0.4)3 m3×20 kg/m3 = 1.28 kg (8.16)
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except for the fourth case, where the amount of released gas is affected by the ratio of heats of combustion

0.75×1.28 kg = 0.96 kg (8.17)

The same case is tested in two dimensions (box_burn_away_2D and box_burn_away_2D_residue). In
the latter case, only half of the mass is converted to fuel, leaving behind a residue that is 50 % of the original
mass. The box is forced to burn away by setting the BULK_DENSITY to 10 kg/m3. This is the combustible
mass. These two cases exhibit a fictitious increase in solid mass when new unburned surfaces are exposed as
entire mesh cells disappear. The increased mass is just an artifact of reporting the residual solid mass as the
product of surface density and surface area. Both the final solid mass and the gaseous degradation products
should match the expected values at the end of the simulation.

8.6 Testing Your Pyrolysis Model

Modeling the burning of real materials can be very complicated. Undoubtedly, the SURF and MATL lines in
the input file will consist of a combination of empirical and fundamental properties, often originating from
different sources. How do you know that the various property values and the associated thermo-physical
model in FDS constitute an appropriate description of the solid? For a full-scale simulation, it is hard to
untangle the uncertainties associated with the gas and solid phase routines. However, it is easy to perform
a simple check of any set of solid phase model by essentially turning off the gas phase. In the following
sections, guidance is provided on how to perform a quick simulation of the cone calorimeter and bench-
scale measurements like thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), and
micro-combustion calorimetry (MCC).

8.6.1 Simulating the Cone Calorimeter

This section describes how to set up a simple model of the cone calorimeter or other similar apparatus. This
is not a full 3-D simulation of the apparatus, but rather a 1-D simulation of the solid phase degradation under
an imposed external heat flux. You can literally create a model of the cone heater and sample holder in FDS
to simulate the coupling of gas and solid phase phenomena, but before even attempting this, it is worthwhile
to perform a quick simulation like the one described here to test the solid phase model only.

1. Create a trivially small mesh, just to let FDS run. Since the gas phase calculation is essentially being
shut off, you just need 4 cells in each direction (IJK=4,4,4) for the pressure solver to function properly.

2. On the TIME line, set WALL_INCREMENT=1 to force FDS to update the solid phase every time step
(normally it does this every other time step), and set DT to whatever value appropriate for the solid
phase calculation. Since there is no gas phase calculation that will limit the time step, it is best to
control this yourself.

3. Set HEAT_TRANSFER_COEFFICIENT=0 on the SURF line. This turns off the convective heat flux from
gas to surface and vice versa. The heat flux to the solid is specified via EXTERNAL_FLUX4 (kW/m2) on
the SURF line that is assigned to the solid surface.

4. Turn off all the gas phase computations by setting SOLID_PHASE_ONLY=.TRUE. on the MISC line.
This will also speed up the computations significantly. If a REAC line is needed to define a fuel gas, you

4You can control EXTERNAL_FLUX using either TAU_EF or RAMP_EF. This is useful if you want to ramp up the heat flux
following ignition to account for the additional radiation from the flame. See Section 11.1 for more details about ramps.

90



0 5 10 15 20 25 30
Time (s)

0

0.5

1

1.5

M
as

s 
(k

g)

Pyrolyzed Mass (box_burn_away1)

FDS6.5.3-540-gbe91017

Ideal
FDS (fuel)

0 5 10 15 20 25 30
Time (s)

0

0.5

1

1.5

M
as

s 
(k

g)

Pyrolyzed Mass (box_burn_away2)

FDS6.5.3-540-gbe91017

Ideal
FDS (GAS)

0 5 10 15 20 25 30
Time (s)

0

0.5

1

1.5

M
as

s 
(k

g)

Pyrolyzed Mass (box_burn_away3)

FDS6.5.3-540-gbe91017

Ideal
FDS (fuel)

0 5 10 15 20 25 30
Time (s)

0

0.5

1

1.5

M
as

s 
(k

g)

Pyrolyzed Mass (box_burn_away4)

FDS6.5.3-540-gbe91017

Ideal
FDS (fuel)

0 5 10 15 20 25 30
Time (s)

0

0.5

1

1.5

M
as

s 
(k

g)

Pyrolyzed Mass (box_burn_away_2D)

FDS6.5.3-540-gbe91017

Ideal (fuel)
Ideal (solid)
FDS (fuel)
FDS(solid)

0 5 10 15 20 25 30
Time (s)

0

0.5

1

1.5

M
as

s 
(k

g)

Pyrolyzed Mass (box_burn_away_2D_residue)

FDS6.5.3-540-gbe91017

Ideal (fuel)
Ideal (solid)
FDS (fuel)
FDS(solid)

Figure 8.5: Output of box_burn_away test cases.
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may turn off combustion by setting Y_O2_INFTY=0.01 on the MISC line. This sets the background
oxygen mass fraction to 0.01, too low to support any burning.

5. Generate MATL lines, plus a single SURF line, as you normally would, except add EXTERNAL_FLUX to
the SURF line. This is simply a “virtual” source that heats the solid. Think of this as a perfect radiant
panel or conical heating unit.

6. Assign the SURF_ID to a VENT that spans the bottom of the computational domain. Create OPEN vents
on all other faces.

7. Finally, add solid phase output devices to the solid surface, like ’WALL TEMPERATURE’, ’NET HEAT

FLUX’, ’BURNING RATE’, ’GAUGE HEAT FLUX’, and ’WALL THICKNESS’ (assuming the solid is to
burn away). Use these to track the condition of the solid as a function of time. In particular, make sure
that the ’BURNING RATE’ is appropriate for the particular external heat flux applied. Make sure that
the ’WALL TEMPERATURE’ is appropriate. Compare your results to measurements made in a bench-
scale device, like the cone calorimeter. Keep in mind, however, that the calculation and the experiment
are not necessarily perfectly matched. The calculation is designed to eliminate uncertainties related to
convection, combustion, and apparatus-specific phenomena.

Below is an FDS input file that demonstrates how you can test a candidate pyrolysis model by running very
short calculations. The simulation only involves the solid phase model. Essentially, the gas phase calculation
is shut off except for the imposition of a 52 kW/m2 “external” heat flux. The solid in this example is a 8.5 mm
thick slab of PMMA. For more details, see the FDS Validation Guide under the heading “FAA Polymers.”

&HEAD CHID='FAA_Polymers_PMMA', TITLE='Black PMMA at 50 kW/m2' /
&MESH IJK=3,3,4, XB=-0.15,0.15,-0.15,0.15,0.0,0.4 /
&TIME T_END=600., WALL_INCREMENT=1, DT=0.01 /
&MISC Y_O2_INFTY=0.01, SOLID_PHASE_ONLY=.TRUE. /
&REAC FUEL='METHANE' /
&MATL ID='BLACKPMMA'

ABSORPTION_COEFFICIENT=2700.
N_REACTIONS=1
A(1) = 8.5E12
E(1) = 188000
EMISSIVITY=0.85
DENSITY=1100.
SPEC_ID='METHANE'
NU_SPEC=1.
HEAT_OF_REACTION=870.
HEAT_OF_COMBUSTION=25200.
CONDUCTIVITY = 0.20
SPECIFIC_HEAT = 2.2

&SURF ID='PMMA SLAB'
COLOR='BLACK'
BACKING='INSULATED'
MATL_ID='BLACKPMMA'
THICKNESS=0.0085
HEAT_TRANSFER_COEFFICIENT=0.
EXTERNAL_FLUX=52 /

&VENT XB=-0.05,0.05,-0.05,0.05,0.0,0.0, SURF_ID = 'PMMA SLAB' /
&DUMP DT_DEVC=5. /
&DEVC XYZ=0.0,0.0,0.0, IOR=3, QUANTITY='WALL TEMPERATURE', ID='temp' /
&DEVC XYZ=0.0,0.0,0.0, IOR=3, QUANTITY='BURNING RATE', ID='MLR' /
&DEVC XYZ=0.0,0.0,0.0, IOR=3, QUANTITY='WALL THICKNESS', ID='thick' /
&TAIL /
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8.6.2 Simulating Bench-scale Measurements like the TGA, DSC, and MCC

There are a number of techniques to measure the thermo-physical properties of a solid material. Most of
these involve heating a very small sample at a relatively slow, linear rate. In this way, thermal conduc-
tion is minimized and the sample can be considered thermally-thin. FDS has a special feature that mim-
ics thermal-gravimetric analysis (TGA), differential scanning calorimetry (DSC), and micro-combustion
calorimetry (MCC) measurements. To use it, set up your input file as you normally would. Then, add the
flag TGA_ANALYSIS=.TRUE. to the SURF line you want to analyze. You can only analyze one SURF line
at a time. Optionally, you can specify TGA_HEATING_RATE (K/min) and TGA_FINAL_TEMPERATURE (◦C)
to indicate the linear heating rate and the final temperature of the sample. The default values are 5 K/min
and 800 ◦C. The initial temperature is TMPA. Note that this feature is only appropriate for a SURF line that
describes a thermally-thick sample consisting of a single layer with multiple reacting components. For
example, the following SURF line describes a material that consists of three components:

&SURF ID = 'Cable Insulation'
TGA_ANALYSIS = .TRUE.
TGA_HEATING_RATE = 60.
THICKNESS = 0.005
MATL_ID(1,1) = 'Component A',
MATL_ID(1,2) = 'Component B',
MATL_ID(1,3) = 'Component C',
MATL_MASS_FRACTION(1,1:3) = 0.26,0.33,0.41 /

The two TGA entries will force FDS to perform a numerical version of the TGA, DSC and MCC measure-
ments. The THICKNESS and other boundary conditions on the SURF line will be ignored. After running the
analysis, which only takes a second or two, FDS will then shut down without running the actual simulation.
To run the simulation, either remove the TGA entries or set TGA_ANALYSIS to .FALSE.

The result of the TGA_ANALYSIS is a single comma-delimited file called CHID_tga.csv. The first and
second columns of the file consist of the time and sample temperature. The third column is the normalized
sample mass; that is, the sample mass divided by its initial mass. The fourth column is the mass loss rate, in
units of s−1. The fifth column is the heat release rate per unit mass of the sample in units of W/g, typical of
an MCC measurement. The sixth column is the heat absorbed by the sample normalized by its mass, also in
units of W/g, typical of a DSC measurement. Results for a typical analysis of wood are shown in Fig. 8.6.
In this case, a sample of wood containing about 10 % water by mass heats up and undergoes three reactions,
including the evaporation of water. Note that the TGA plots include both fuel and water vapor, while the
MCC results only show fuel.

Details of the output quantities are discussed in Section 17.10.8. Further details on these measurement
techniques and how to interpret them are found in the FDS Verification Guide [3].
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Figure 8.6: Sample results of a tga_analysis.
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Chapter 9

Ventilation

This chapter explains how to model a ventilation system. There are two ways to do this. First, if you only
want to specify air flow rates into and out of compartments, read Section 9.1 for a description of simple
velocity boundary conditions. However, if you want to model the entire HVAC system, read Section 9.2.

9.1 Simple Vents, Fans and Heaters

The ventilation system of individual compartments within a building is described using velocity boundary
conditions. For example, fresh air can be blown into, and smoke can be drawn from, a compartment by
specifying a velocity in the normal direction to a solid surface. However, there are various other facets of
velocity boundary conditions that are described below.

9.1.1 Simple Supply and Exhaust Vents

The easiest way to describe a supply or exhaust fan is to specify a VENT on a solid surface, and designate
a SURF_ID with some form of specified velocity or volume flow rate. The normal component of velocity
is usually specified directly via the parameter VEL. If VEL is negative, the flow is directed into the compu-
tational domain, i.e., a supply vent. If VEL is positive, the flow is drawn out of the domain, i.e., an exhaust
vent. For example, the lines

&SURF ID='SUPPLY', VEL=-1.2, COLOR='BLUE' /
&VENT XB=5.0,5.0,1.0,1.4,2.0,2.4, SURF_ID='SUPPLY' /

create a VENT that supplies air at a velocity of 1.2 m/s through an area of nominally 0.16 m2, depending
on the realignment of the VENT onto the FDS mesh. Regardless of the orientation of the plane x = 5,
the flow will be directed into the room because of the sign of VEL. In this example the VENT may not
be exactly 0.16 m2 in area because it may not align exactly with the computational mesh. If this is the
case then VOLUME_FLOW can be prescribed instead of VEL. The units are m3/s. If the flow is entering the
computational domain, VOLUME_FLOW should be a negative number, the same convention as for VEL. Note
that a SURF with a VOLUME_FLOW prescribed can be invoked by either a VENT or an OBST, but be aware that
in the latter case, the resulting velocity on the face or faces of the obstruction will be given by the specified
VOLUME_FLOW divided by the area of that particular face. For example:

&SURF ID='SUPPLY', VOLUME_FLOW=-5.0, COLOR='GREEN' /
&OBST XB=..., SURF_ID6='BRICK','SUPPLY','BRICK','BRICK','BRICK','BRICK' /
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dictates that the forward x-facing surface of the obstruction is to have a velocity equal to 5 m3/s divided by
the area of the face (as approximated within FDS) flowing into the computational domain.

Note that VEL and VOLUME_FLOW should not be specified on the same SURF line. The choice depends
on whether an exact velocity is desired at a given vent, or whether the given volume flux is desired.

Note also that if the VENT or OBST crosses mesh boundaries, the specified VOLUME_FLOW will be recom-
puted in each mesh so that the desired volume flow is achieved. This was not the case in FDS version 6.3
and earlier. The sample cases called volume_flow_1.fds and volume_flow_2.fds in the Flowfields
folder demonstrate that a VENT or an OBST can be divided among several meshes. In both cases, air is drawn
from a 1 m by 1 m by 1 m box at a rate of 0.01 m3/s. These cases also ensure that the VENT or OBST need not
be aligned with the mesh to yield the desired flow rate. Figure 9.1 displays the volume flow drawn though
an OPEN boundary on an opposite face of the box with either a VENT (left) or OBST (right) with a specified
volume flow.
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Figure 9.1: Flow rate of air drawn through a unit cube via a VENT (left) and OBST (right) with specified
VOLUME_FLOW.

9.1.2 Total Mass Flux

Most often, you specify a simple supply or exhaust vent by setting either a normal velocity or volume flux
at a solid surface. However, you may wish to control the total mass flow rate per unit area (kg/(m2 · s)) via
the parameter MASS_FLUX_TOTAL. This parameter uses the same sign convention as VEL above. In fact,
the value entered for MASS_FLUX_TOTAL is converted internally into a velocity boundary condition whose
value for an outflow is adjusted based on the local density. Note that MASS_FLUX_TOTAL should only be
used for an outflow boundary condition; for inflow use MASS_FLUX which is discussed in Section 9.1.6.

9.1.3 Heaters

You can create a simple heating vent by changing the temperature of the incoming air

&SURF ID='BLOWER', VEL=-1.2, TMP_FRONT=50. /

The VENT with SURF_ID=’BLOWER’ would blow 50 ◦C air at 1.2 m/s into the flow domain. Making VEL

positive would suck air out, in which case TMP_FRONT would not be necessary.
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Note that if HRRPUA or solid phase reaction parameters are specified, no velocity should be prescribed.
The combustible gases are ejected at a velocity computed by FDS.

9.1.4 Louvered Vents

Most real supply vents are covered with some sort of grill or louvers which act to redirect, or diffuse, the
incoming air stream. It is possible to mimic this effect, to some extent, by prescribing both a normal and
the tangential components of the flow. The normal component is specified with VEL as described above.
The tangential is prescribed via a pair of real numbers VEL_T representing the desired tangential velocity
components in the other two coordinate directions (x or y should precede y or z). For example, the line in
the example case Flowfields/tangential_velocity.fds

&SURF ID='LOUVER', VEL=-2.0, VEL_T=3.0,0.0, TAU_V=5., COLOR='GREEN' /

is a boundary condition for a louvered vent that pushes air into the space with a normal velocity of 2 m/s
and a tangential velocity of 3 m/s in the first of the two tangential directions. Note that the negative sign
of the normal component of velocity indicates that the fluid is injected into the computational domain.
The tangential velocity of 3 m/s indicates that the flow is in the positive y direction. Both the normal and
tangential velocity components are ramped up with either TAU_V or RAMP_V, as shown in Fig. 9.2.
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Figure 9.2: Normal and tangential velocity components at a louvered vent, compared to the ideal curve.

In cases of limited mesh resolution, it may not be possible to describe a louvered vent or slot diffuser
using VEL_T because there may not be enough mesh cells spanning the opening. In these cases, you might
consider simply specifying a flat plate obstruction in front of the VENT with an offset of one mesh cell. The
plate will simply redirect the air flow in all lateral directions.

If the louvered vent is part of an HVAC system, see 9.2.7 for details on how to specify the louver.

9.1.5 Specified Normal Velocity Gradient

It is sometimes desirable to specify a Neumann boundary condition (specified gradient) for the velocity in
the direction normal to the boundary. For example, the following allows inflow and outflow along the top of
the domain, but ∂w/∂ z = 0. Note that FREE_SLIP=.TRUE. only sets ∂u/∂ z = 0 and ∂v/∂ z = 0.
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&SURF ID = 'sky', COLOR = 'INVISIBLE', VEL_GRAD=0., FREE_SLIP=.TRUE. /
&VENT MB='ZMAX', SURF_ID='sky' /

9.1.6 Species and Species Mass Flux Boundary Conditions

There are two types of species boundary conditions (see Chapter 12 for a general discussion of gas species).
By default, gas species do not penetrate solid surfaces and you need not specify anything if this is all
you need. If the mass fraction of the species is to be some value at a forced flow boundary where VEL,
VOLUME_FLOW, or MASS_FLUX_TOTAL is specified, set MASS_FRACTION(:) equal to the desired species
mass fractions on the appropriate SURF line. If the mass flux of the species is desired, set MASS_FLUX(:) in-
stead of MASS_FRACTION(:). If MASS_FLUX(:) is set, do not specify VEL, VOLUME_FLOW, or
MASS_FLUX_TOTAL. These are automatically calculated based on the specified mass flux. The inputs
MASS_FLUX(:) and typically MASS_FRACTION(:) should only be used for inflow boundary conditions.
MASS_FLUX(:) should be positive with units of kg/(m2 · s). Also note that the background species can-
not be specified when using MASS_FRACTION. The mass fraction of the background species will be set to
account for any mass fraction not specified with other species.

Here is an example of how to specify a surface that generates methane at a rate of 0.025 kg/(m2 · s):

&SPEC ID='METHANE' /
&SURF ID='METHANE BURNER', SPEC_ID(1)='METHANE', MASS_FLUX(1)=0.025 /
&VENT XB=..., SURF_ID='METHANE BURNER' /

Here is example of how to specify a surface that blows methane with a velocity of 0.1 m/s:

&SPEC ID='METHANE' /
&SURF ID='METHANE BLOWER', MASS_FRACTION(1)=1.0, SPEC_ID(1)='METHANE', VEL=-0.1 /
&VENT XB=..., SURF_ID='METHANE BLOWER' /

Note that specifying a combination of VEL and MASS_FRACTION can lead to inaccurate results if the speci-
fied velocity is small because diffusion will dominate the mass transport. To obtain an accurate species mass
flux at a boundary, use MASS_FLUX.

Alternatively, add CONVERT_VOLUME_TO_MASS=.TRUE. for velocity boundaries (VEL, VOLUME_FLOW,
or MASS_FLUX_TOTAL), which converts volume flow to a mass flux based on the specified boundary com-
position (MASS_FRACTION) and temperature (TMP_FRONT):

ṁ′′α = ρZαu =
p∞W
RT

Zα
Q̇
A

(9.1)

where ρ is the density, Zα is the mass fraction of α , u is the velocity normal to the surface, p∞ is the ambient
pressure, W is the mixture molecular weight, R is the ideal gas constant, T is the surface temperature, Q̇ is
the volume flow rate, and A is the area of the vent.

9.1.7 Tangential Velocity Boundary Conditions at Solid Surfaces

The no-slip condition implies that the continuum tangential gas velocity at a surface is zero. In turbu-
lent flow the velocity increases rapidly through a boundary layer that is only a few millimeters thick to
its “free-stream” value. In most practical simulations, it is not possible to resolve this boundary layer di-
rectly; thus, an empirical model is used to represent its effect on the overall flow field. For a DNS (Direct
Numerical Simulation), the velocity gradient at the wall is computed directly from the resolved velocity
near the wall (NO_SLIP=.TRUE. by default). For an LES (Large Eddy Simulation), a “log law” wall
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model is applied. The surface roughness (in meters) is set by ROUGHNESS on SURF. See the FDS Technical
Reference Guide [1] for wall model details. To force a solid boundary to have a free-slip condition, set
FREE_SLIP=.TRUE.1 on the SURF line. In LES, to override the wall model and force a no-slip boundary
condition, set NO_SLIP=.TRUE. on the SURF line.

9.1.8 Synthetic Turbulence Inflow Boundary Conditions

Real flows of low-viscosity fluids like air are rarely perfectly stationary in time or uniform in space—they
are turbulent (to some degree). Of course, the turbulence characteristics of the flow may have a significant
impact on mixing and other behaviors so the specification of nominally constant and uniform boundary
conditions may be insufficient. To address this issue, FDS employs a synthetic eddy method (SEM)2. Refer
to Jarrin [22] for a detailed description. In brief, “eddies” are injected into the flow at random positions on the
boundary and advect with the mean flow over a short distance near the boundary equivalent to the maximum
eddy length scale. Once the eddy passes through this region it is recycled at the inlet of the boundary with
a new random position and length scale. The eddies are idealized as velocity perturbations over a spherical
region in space with a diameter (eddy length scale) selected from a uniform random distribution. The
selection procedures guarantee that prescribed first and second-order statistics (including Reynolds stresses)
are satisfied.

Synthetic turbulence is invoked by setting the number of eddies, N_EDDY, the characteristic eddy length
scale, L_EDDY, and either the root mean square (RMS) velocity fluctuation, VEL_RMS, or the Reynolds stress
tensor components, REYNOLDS_STRESS(3,3) on the VENT line. In Fig. 9.3 we show examples using SEM
for flat, parabolic, atmospheric, and ramp profiles with 10 % turbulence intensity (see the sem_* test series
in the Turbulence verification subdirectory). The input lines for the atmospheric case are (see Section 10.1
for further discussion of profile parameters).

&SURF ID='inlet', VEL=-1, PROFILE='ATMOSPHERIC', Z0=0.5, PLE=0.3 /
&VENT MB='XMIN', SURF_ID='inlet', N_EDDY=100, L_EDDY=0.2, VEL_RMS=.1 /

Note that the Reynolds stress is symmetric and only the lower triangular part needs to be specified. The
RMS velocity fluctuation is isotropic (equivalent for each component). Thus, VEL_RMS ≡

√
2k/3, where

k ≡ 〈1
2 u′iu

′
i〉 is the turbulent kinetic energy per unit mass. Below is an example illustrating the equivalence

between the RMS velocity fluctuation and the diagonal components of the Reynolds stress. Note that if
VEL_RMS is specified, this is equivalent to

REYNOLDS_STRESS(1,1) = VEL_RMS**2
REYNOLDS_STRESS(2,2) = VEL_RMS**2
REYNOLDS_STRESS(3,3) = VEL_RMS**2

and all other components of REYNOLDS_STRESS are zero. If the fluctuations are not isotropic, then the
Reynolds stresses must be specified componentwise.

In Chapter 7 of Jarrin’s thesis [22], he introduces the Modified Synthetic Eddy Method in which the
eddy length scales are anisotropic. This allows more realistic characterization of streamwise vortices in a
turbulent boundary layer. To specify the length scales corresponding to the σi j values in Jarrin’s Eq. (7.1)
use L_EDDY_IJ(3,3). Here is an example with random values for the eddy length scales and Reynolds

1This parameter sets the wall stress to zero (removes viscous friction). It is not equivalent to the SAWTOOTH=.FALSE.
functionality from versions of FDS prior to Version 6.

2SEM only applies to velocity boundary conditions and so may not be used for HVAC vents, which are strict mass flux bound-
aries.
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Figure 9.3: Synthetic Eddy Method vent profiles: flat (upper left), parabolic (upper right), atmospheric
(lower left), and linear ramp (lower right).

stress components:

&VENT XB=... , SURF_ID='WIND', N_EDDY=500,
L_EDDY_IJ(1,1)=21., L_EDDY_IJ(1,2)=6.22, L_EDDY_IJ(1,3)=4.23
L_EDDY_IJ(2,1)=2.35, L_EDDY_IJ(2,2)=5.66, L_EDDY_IJ(2,3)=2.50
L_EDDY_IJ(3,1)=5.42, L_EDDY_IJ(3,2)=0.78, L_EDDY_IJ(3,3)=1.01
REYNOLDS_STRESS(1,1)=2.16, REYNOLDS_STRESS(1,2)=0., REYNOLDS_STRESS(1,3)=-0.47
REYNOLDS_STRESS(2,1)=0., REYNOLDS_STRESS(2,2)=1.53, REYNOLDS_STRESS(2,3)=0.
REYNOLDS_STRESS(3,1)=-0.47, REYNOLDS_STRESS(3,2)=0., REYNOLDS_STRESS(3,3)=4.259 /

9.1.9 Random Mass Flux Variation

The current implementation of the Synthetic Eddy Method does not allow variation in mass flux defined on
a SURF line. For example, HRRPUA and MASS_FLUX boundary conditions are by default taken as constant
for a given SURF. In reality, of course, this is rarely the case—generally there is some level of random
variation in the mass flux on the surface. In an attempt to accommodate this effect, we have implemented
an experimental feature where the user may specify a mass flux variation as a fractional value with the
parameter MASS_FLUX_VAR. For example, if you want a 10 % variation in a heat release rate per unit area
of 100 kW/m2 then use
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&SURF ID='burner', HRRPUA=100., MASS_FLUX_VAR=0.1 /

It may be helpful to use the boundary file output quantity MASS FLUX WALL CELL to visualize the
variation. For example,

&BNDF QUANTITY='MASS FLUX WALL CELL', CELL_CENTERED=.TRUE. /

9.2 HVAC Systems: The HVAC Namelist Group (Table 18.9)

There are occasions where simply defining fixed flow and fixed species boundary conditions is not sufficient
to model the behavior of an HVAC (Heating, Ventilation, and Air Conditioning) system. If the ability
to transport heat and combustion products through a duct network or the ability to fully account for the
pressurization of a compartment due to a fire on the flows in a duct network is important, you can make
use of a coupled HVAC network solver. The solver computes the flows through a duct network described
as a mapping of duct segments and nodes where a node is either the joining of two or more ducts (a tee for
example) or where a duct segment connects to the FDS computational domain.

By default the HVAC solver does not allow for mass storage in the duct network (i.e., what goes in
during a time step, goes out during a time step). However, if you set HVAC_MASS_TRANSPORT=.TRUE. on
the MISC line then the HVAC solver will account for mass storage and will compute transient species and
energy transport through the ducts.

HVAC components such as fans and binary dampers (fully open or fully closed) can be included in
the HVAC network and are coupled to the FDS control function capability. You can select from three fan
models.

The HVAC solver is invoked if there is an HVAC namelist group present in the input file. An HVAC
network is defined by providing inputs for the ducts; duct nodes; and any fans, dampers, filters, or heating
and coiling coils present in the system. Additionally you must define the locations where the HVAC network
joins the computational domain. The basic syntax for an HVAC component is:

&HVAC TYPE_ID='componenttype', ID='componentname', ... /

TYPE_ID is a character string that indicates the type of component that the namelist group is defining.
TYPE_ID can be DUCT, NODE, FAN, FILTER, AIRCOIL, or LEAK (see Section 9.3.2).

ID is a character string giving a name to the component. The name must be unique amongst all other
components of that type; however, the same name can be given to components of different types (i.e., a
duct and a node can have the same name but two ducts cannot).

A number of examples of simple HVAC systems are given in the HVAC folder of the sample cases and are
discussed in the FDS Verification Guide.

As described in the Technical Reference Manual, the HVAC pressure solution is not directly coupled to
the FDS pressure solution. Rather there is implicit coupling using the wall boundary condition for HVAC
vents. At times this can result in stability problems. If this occurs, setting the keyword DT_HVAC on the
MISC line may help. When set, this will cause FDS to use the value of DT_HVAC in the HVAC solver rather
than the current FDS time step (filter loading will use the FDS time step). In effect as DT_HVAC is increased,
the HVAC solution will approach a steady-state solution for the current conditions in the domain.
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9.2.1 HVAC Duct Parameters

A typical input line specifying a duct is as follows:

&HVAC TYPE_ID='DUCT', ID='ductname', NODE_ID='node 1','node 2', AREA=3.14,
LOSS=1.,1., LENGTH=2., ROUGHNESS=0.001, FAN_ID='fan 1', DEVC_ID='device 1' /

Or, if you are using MASS_TRANSPORT=.TRUE., as follows:

&HVAC TYPE_ID='DUCT', ID='ductname', NODE_ID='node 1','node 2', AREA=3.14,
LOSS=1.,1., LENGTH=2., ROUGHNESS=0.001, FAN_ID='fan 1', DEVC_ID='device 1',
DUCT_INTERP_TYPE='NODE1', N_CELLS=200 /

where:

AIRCOIL_ID is the ID of an aircoil located in the duct. The operation of the aircoil can be controlled by
either a device or a control function.

AREA is the cross sectional area of the duct in m2.

DAMPER is a logical parameter indicating the presence of a damper in the duct. The state of the damper is
controlled by either a device or a control function (see Section 9.2.2).

DIAMETER is the diameter of the duct in m. If only DIAMETER is specified, the AREA will be computed
assuming a round duct. Do not specify both DIAMETER and PERIMETER.

DEVC_ID is the ID of a DEVC for a damper, fan, or aircoil in the duct. An alternative is CTRL_ID.

DUCT_INTERP_TYPE sets whether the duct is initialized with data from the first node (NODE1) or the sec-
ond node (NODE2). Continuous runs of ducts cannot have a mix of interpolation methods (refer to
Section 9.2.8).

FAN_ID is the ID of a fan located in the duct. Instead of specifying a FAN_ID, you could specify the
VOLUME_FLOW rate (m3/s) through the duct. The operation of the fan can be controlled by either a
device or a control function.

LENGTH is the LENGTH of the duct in m. Note that LENGTH is not computed automatically as the difference
between the XYZ of the duct’s endpoints.

LOSS is a pair of real numbers giving the forward and reverse dimensionless "minor losses" loss coefficient
(Kminor) in the duct. Minor losses are pressure losses through components such as tees, valves and bends.
However, you can use LOSS to represent wall friction losses if you want - in this case ensure you leave
ROUGHNESS unset so that the HVAC solver does not compute a friction factor. The forward direction is
defined as flow from the first node listed in NODE_ID to the second node listed in NODE_ID.

MASS_FLOW is a fixed mass flow rate (kg/s) through the duct. Only specify one of MASS_FLOW or VOLUME_FLOW.
You can change its value in time either using the characteristic time, TAU_VF, to define a tanh (TAU_VF>0)
or t2 ramp (TAU_VF<0); or you can specify a RAMP_ID. MASS_FLOW should only be specified for con-
ditions where the upstream node density will not change during the solution process.

N_CELLS defines the number of cells used in a discretized duct.

NODE_ID gives the IDs of the nodes on either end of the duct segment. Positive velocity in a duct is defined
as flow from the first node to second node.
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PERIMETER is used along with AREA to specify a duct with non-circular cross-section. The DIAMETER will
be computed as the hydraulic diameter.

RAMP_LOSS If specified this RAMP is a multiplier for the LOSS.

REVERSE is a logical parameter that when .TRUE. indicates that the specified FAN_ID or VOLUME_FLOW
blows from the second node to the first.

ROUGHNESS is the absolute roughness in m of the duct that is used to compute the friction factor for the duct.
If ROUGHNESS is not set, the HVAC solver will not compute the friction factor and the wall friction will
be zero - if this is the case you may want to account for wall friction losses in LOSS. "Perfectly smooth"
ducts and pipes still have wall losses and therefore setting ROUGHNESS to zero will tell the HVAC solver
to compute the minimum friction factor (which is non-zero) - this is not the same as leaving ROUGHNESS
unset.

VOLUME_FLOW is a fixed flow rate (m3/s) through the duct. Only specify one of MASS_FLOW or VOLUME_FLOW.
If you specify VOLUME_FLOW, you can change its value in time either using the characteristic time,
TAU_VF, to define a tanh (TAU_VF>0) or t2 ramp (TAU_VF<0); or you can specify a RAMP_ID. This
cannot be controlled by a device or control function; however, a constant volume flow FAN can be.

Note that only one of AIRCOIL_ID, DAMPER, or FAN_ID should be specified for a duct. Also note that if
one of these is specified, but no device or control function is provided, then the item will be assumed to be
on or open as appropriate.

To reduce the computational cost of the HVAC solver, a duct should be considered as any length of duct
that connects two items that must be defined as nodes (i.e., a connection to the FDS domain, a filter, or a
location where more than two ducts join). That is, a duct should be considered as any portion of the HVAC
system where flow can only be in one direction at given point in time (flow can reverse direction over time).
For example the top of Figure 9.4 shows a segment of an HVAC system where flow from a tee goes through
an expansion fitting, two elbows, an expansion fitting, and a straight length of duct before it terminates as a
connection to the FDS domain.

This could be input as each individual fitting or duct with its associated area and loss as shown in the
middle of the figure; however, this would result in five duct segments (one for each component) with six
node connections resulting in eleven parameters (five velocities and six pressures) which must be solved for.
This is not needed since whatever the flow rate is in any one segment of the duct, that same flow rate exists in
all other segments; thus, the velocities in any segment can be found by taking the area ratios, v1/v2 = A2/A1.
Since flow losses are proportional to the square of the velocity, an equivalent duct can be constructed using
the total length of the duct, and a representative area (Aeff) or diameter. The pressure losses associated with
all the segments of the duct can be collapsed to a single effective loss (Keff) by summing all of the fitting
losses (Kminor) through the duct as follows:

Keff = ∑
i
(Kminor)i

Aeff

Ai
(9.2)

where i is a fitting and Ai is the area associated with the fitting loss.

9.2.2 HVAC Dampers

Dampers can be modeled in one of two ways.
The first method is a simple binary (flow or no flow) damper. This can be placed in a duct by adding

the keyword DAMPER along with either a CTRL_ID or DEVC_ID. When the control or device is .TRUE. the
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Figure 9.4: An example of simplifying a complex duct.

damper will be open, and when .FALSE. the damper will be closed and block 100 % of the duct area. The
example below shows a duct with a damper that that is linked to a DEVC that closes the damper at 10 s. For
further details see the HVAC_damper example case, which is documented in the Verification Guide.

&HVAC TYPE_ID='DUCT',ID='EXHAUST 2',NODE_ID='TEE','EXHAUST 2',AREA=0.01,
LENGTH=1.0,LOSS=0,0,DAMPER=.TRUE.,DEVC_ID='TIMER'/

&DEVC QUANTITY='TIME',ID='TIMER',SETPOINT=10,INITIAL_STATE=.TRUE.,XYZ=0,0,0/

The second method is to specify a RAMP_LOSS for the duct. This approach multiplies the LOSS array
for the duct by the output of the RAMP. This allows for dampers that have leakage and/or dampers that have
a variable position other than fully open or fully closed. An example is shown below where the LOSS in the
duct changes from 1,1 at 10 s to 2000,2000 at 11 s.

&HVAC TYPE_ID='DUCT',ID='EXHAUST 2',NODE_ID='TEE','EXHAUST 2',AREA=0.01,
LENGTH=1.0,LOSS=1,1,RAMP_LOSS='LOSS RAMP'/

&RAMP ID='LOSS RAMP',T=10,F=1/
&RAMP ID='LOSS RAMP',T=11,F=2000/

9.2.3 HVAC Node Parameters

Below are three example duct node inputs representing a typical tee-type connection (multiple ducts being
joined), a connection to the FDS domain, and a connection to the ambient outside the FDS domain.
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&HVAC TYPE_ID='NODE', ID='tee', DUCT_ID='duct 1','duct 2',..'duct n',
LOSS=lossarray, XYZ=x,y,z /

&HVAC TYPE_ID='NODE', ID='FDS connection', DUCT_ID='duct 1', VENT_ID='vent',
LOSS=enter,exit /

&HVAC TYPE_ID='NODE', ID='ambient', DUCT_ID='duct 1', LOSS=enter,exit,
XYZ=x,y,z, AMBIENT=.TRUE. /

where:

AMBIENT is a logical value. If .TRUE., then the node is connected to the ambient (i.e., it is equivalent to
the OPEN boundary condition on a SURF line).

DUCT_ID gives the IDs of the ducts connected to the node. Up to 10 ducts can be connected to a node.

FILTER_ID gives the ID a filter located at the node. A node with a filter can only have two connected
ducts.

LOSS is an n by n array of real numbers giving the dimensionless loss coefficients for the node. LOSS(I,J)
is the loss coefficient for flow from duct I to duct J expressed in terms of the downstream duct area (see
discussion in 9.2.1 on how to adjust losses for area changes). For a terminal node (e.g., a node connected
to the ambient or to a VENT) the LOSS is entered as a pair of numbers representing loss coefficient for
flow entering the HVAC system and for flow exiting the HVAC system.

VENT_ID is the name of the VENT where the node connects to the FDS computational domain. No two
VENTs should be defined with the same VENT_ID.

XYZ is a triplet of real numbers giving the coordinates of the node. This location is used to compute
buoyancy heads. If the node is connected to the FDS domain, then do not specify XYZ. FDS will
compute it as the centroid of the VENT. Note that if you do not specify an XYZ for an interior node, then
FDS will use the default value of 0,0,0.

A duct node must either have two or more ducts attached to it or it must have either AMBIENT=.TRUE. or a
specified VENT_ID. When defining a VENT as a component of an HVAC system you must set SURF_ID to
’HVAC’ and you must set the VENT_ID.

Note, do not split an HVAC VENT over multiple-meshes. It is permissible to have individual VENT lines
for an HVAC system in different meshes, but any single HVAC VENT needs to be contained within a single
mesh. This restriction does not apply to surfaces with leakage flows.

9.2.4 HVAC Fan Parameters

Below are given sample inputs for the three types of fans supported by FDS.

&HVAC TYPE_ID='FAN', ID='constant volume', VOLUME_FLOW=1.0, LOSS=2./
&HVAC TYPE_ID='FAN', ID='quadratic', MAX_FLOW=1., MAX_PRESSURE=1000., LOSS=2. /
&HVAC TYPE_ID='FAN', ID='user fan curve', RAMP_ID='fan curve', LOSS=2. /

where:

LOSS is the loss coefficient for flow through the fan when it is not operational.

MAX_FLOW is the maximum volumetric flow of the fan in m3/s. This input activates a quadratic fan model.

MAX_PRESSURE is the stall pressure of the fan in units of Pa. This input activates a quadratic fan model.
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RAMP_ID identifies the RAMP that contains a table of pressure drop across the fan (Pa) versus the volumetric
flow rates (m3/s) for a user-defined fan curve.

TAU_FAN defines a tanh (TAU_FAN > 0) or t2 ramp (TAU_FAN < 0) for the fan. This is applied to the flow
rate computed by any of the three types (constant flow, quadratic, or user-defined ramp) of fans.

VOLUME_FLOW is the fixed volumetric flow of the fan (m3/s). If you wish to have a time dependent flow use
the VOLUME_FLOW input for a duct rather than for a fan.

Note that only one set of fan model inputs (VOLUME_FLOW, RAMP_ID, or MAX_FLOW + MAX_PRESSURE)
should be specified. Also note that FAN defines a class of fans rather than one specific fan. Therefore, more
than one duct can reference a single FAN.

Fan Curves

In Section 9.1 there is a discussion of velocity boundary conditions, in which a fan is modeled simply as a
solid boundary that blows or sucks air, regardless of the surrounding pressure field. In the HVAC model, this
approach to modeling a fan occurs when the fan is specified with a VOLUME_FLOW. In reality, fans operate
based on the pressure drop across the duct or manifold in which they are installed. A very simple “fan curve”
is given by:

V̇fan = V̇max sign(∆pmax−∆p)

√
|∆p−∆pmax|

∆pmax
(9.3)

This simple “fan curve” is the “quadratic” fan model as the pressure is proportional to the square of the
volume flow rate.

The volume flow in the absence of a pressure difference, MAX_FLOW, is given by V̇max. The pressure
difference, ∆p = p1− p2, indicates the difference in pressure between the downstream compartment, or
“zone,” and the upstream. The subscript 1 indicates downstream and 2 indicates upstream. The term,
∆pmax, is the maximum pressure difference, MAX_PRESSURE, the fan can operate upon, and it is assumed to
be a positive number. The flow through a fan will decrease from V̇max at zero pressure difference to 0 m3/s
at ∆pmax. If the pressure difference increases beyond this, air will be forced backwards through the fan.
If the downstream pressure becomes negative, then the volume flow through the fan will increase beyond
MAX_FLOW. More complicated fan curves can be specified by defining a RAMP. In the example inputs below,
one fan of each type is specified. A constant volume flow fan with a VOLUME_FLOW of 10 m3/s, a quadratic
fan with MAX_FLUX=10 and MAX_PRESSURE=500, and a user-defined fan with the RAMP set to the values
of the quadratic fan in 200 Pa increments,

&HVAC TYPE_ID='FAN', ID='constant volume', VOLUME_FLOW=10.0/
&HVAC TYPE_ID='FAN', ID='quadratic', MAX_FLOW=10., MAX_PRESSURE=500./
&HVAC TYPE_ID='FAN', ID='user fan curve', RAMP_ID='fan curve'/

&RAMP ID='fan curve',T=-10.00,F= 1000/
&RAMP ID='fan curve',T= -7.75,F= 800/
&RAMP ID='fan curve',T= -4.47,F= 600/
&RAMP ID='fan curve',T= 4.47,F= 400/
&RAMP ID='fan curve',T= 7.75,F= 200/
&RAMP ID='fan curve',T= 10.00,F= 0/
&RAMP ID='fan curve',T= 11.83,F= -200/
&RAMP ID='fan curve',T= 13.42,F= -400/
&RAMP ID='fan curve',T= 14.83,F= -600/
&RAMP ID='fan curve',T= 16.12,F= -800/
&RAMP ID='fan curve',T= 17.32,F=-1000/
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Figure 9.5 displays the fan curves for the inputs shown above. Additional examples can be found in the
ashrae7 and fan_test example cases, which are documented in the Verification Guide.
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Figure 9.5: Fan curves corresponding to a constant fan with VOLUME_FLOW=10, a quadratic fan with
MAX_FLOW=10 and MAX_PRESSURE=500, and a user-defined RAMP equivalent to the quadratic fan.

Jet Fans

Fans do not have to be mounted on a solid wall, like a supply or an exhaust fan. If you just want to blow
gases in a particular direction, create an obstruction OBST and apply to it VENT lines that are associated
with a simple HVAC system. This allows hot, smokey gases to pass through the obstruction, much like a
free-standing fan. See the example case jet_fan.fds which places a louvered fan (blowing diagonally
down) near a fire (see Fig. 9.6).

You may also want to construct a shroud around the fan using four flat plates arranged to form a short
passageway that draws gases in one side and expels them out the other. The obstruction representing the fan
can be positioned about halfway along the passage (if a louvered fan is being used, place the fan at the end
of the passage).

9.2.5 HVAC Filter Parameters

A sample input for a filter is given by:

&HVAC TYPE_ID='FILTER', ID='filter 1', LOADING=0., SPEC_ID='SOOT',
EFFICIENCY=0.99, LOADING_MULTIPLIER=1, CLEAN_LOSS=2., LOSS=100./

where:

CLEAN_LOSS is the dimensionless loss coefficient for flow through the filter when it is clean (zero loading).

EFFICIENCY is an array of the species removal efficiency from 0 to 1 where 0 is no removal of that species
and 1 is complete filtration of the species. The species are identified using SPEC_ID.

LOADING is an array of the initial loading (kg) of the filter for each species being filtered.
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Figure 9.6: Jet fan with a louvered output UVW=-1,0,-1.

LOADING_MULTIPLIER is an array of the species multiplier, Mi, used in computing the total filter loading
when computing the loss coefficient of the filter.

LOSS invokes a linear loss coefficient model where the dimensionless loss coefficient, K, is given as a linear
function of the total loading, KFILTER = KCLEAN_LOSS +KLOSS ∑(LiMi), where Li is the species loading
and Mi is a multiplier. Only one of LOSS or RAMP_ID should be specified.

RAMP_ID identifies the RAMP that contains a table of pressure drop across the filter as a function of total
loading (the summation term given in the definition of LOSS above). Only one of LOSS or RAMP_ID
should be specified.

SPEC_ID identifies the tracked species for the inputs of LOADING_MULTIPLIER and LOADING.

A sample set of filter inputs is shown below. These lines define a filter that removes the species PARTICULATE
with 100 % efficiency. The filter has an initial loss coefficient of 1 and that loss increases by a factor of 7332
for each kg of PARTICULATE captured by the filter. For further details see the sample case HVAC_filter,
which is documented in the Verification Guide.

&SPEC ID='PARTICULATE',MW=28.,MASS_FRACTION_0=0.001,SPECIFIC_HEAT=1./
&HVAC TYPE_ID='NODE',ID='FILTER',DUCT_ID='DUCT1','DUCT2',XYZ(3)=0.55,

FILTER_ID='FILTER'/
&HVAC TYPE_ID='FILTER',ID='FILTER',CLEAN_LOSS=1.,SPEC_ID='PARTICULATE',EFFICIENCY=1.,

LOSS=7732.446,LOADING_MULTIPLIER=1./

Note that a filter input refers to a class of filters and that multiple ducts can reference the same filter
definition.

9.2.6 HVAC Aircoil Parameters

An aircoil refers to a device that either adds or removes heat from air flowing through a duct. In a typical
HVAC system this is done by blowing the air over a heat exchanger (hence the term aircoil) containing a
working fluid such as chilled water or a refrigerant. A sample input line is as follows:

&HVAC TYPE_ID='AIRCOIL', ID='aircoil 1', EFFICIENCY=0.5,
COOLANT_SPECIFIC_HEAT=4.186, COOLANT_TEMPERATURE=10., COOLANT_MASS_FLOW=1./
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where:

COOLANT_MASS_FLOW is the flow rate of the working fluid (kg/s).

COOLANT_SPECIFIC_HEAT is the specific heat (kJ/(kg ·K)) of the working fluid.

COOLANT_TEMPERATURE is the inlet temperature of the working fluid (◦C).

EFFICIENCY is the heat exchanger efficiency, η , from 0 to 1. A value of 1 indicates the exit temperatures
on both sides of the heat exchanger will be equal.

FIXED_Q is the constant heat exchange rate. A negative value indicates heat removal from the duct. The
heat exchange rate can be controlled by either RAMP_ID or by TAU_AC.

TAU_AC defines a tanh (TAU_AC>0) or t2 ramp (TAU_AC<0) for the aircoil. This is applied to the FIXED_Q
of the aircoil. Alternatively, a RAMP_ID can be given.

Note that either FIXED_Q or the set COOLANT_SPECIFIC_HEAT, COOLANT_MASS_FLOW,
COOLANT_TEMPERATURE, and EFFICIENCY should be specified. In the latter case, the heat exchange is
computed as a two step process. First, the outlet temperature is determined assuming 100 % efficient (i.e.,
both fluids exit at the same temperature):

Tfluid,out =
cp,gas uduct Aduct ρduct Tduct,in + cp,fluid ṁfluid Tfluid,in

cp,gas uduct Aduct ρduct + cp,fluid ṁfluid
(9.4)

Second, the actual heat exchanged is computed using the EFFICIENCY.

q̇coil = η cp,fluid ṁfluid (Tfluid,in−Tfluid,out) (9.5)

Note that an aircoil input refers to a class of aircoils and that multiple ducts can reference the same aircoil
definition.

The sample input file HVAC_aircoil.fds demonstrates the use of the aircoil inputs. A constant flow
duct removes air (defined as 28 g/mol with a specific heat of 1 kJ/(kg ·K)) from the floor and injects in
through the ceiling at a volume flow rate of 1 m3/s. An aircoil is defined with a working fluid flowing at
10 kg/s and 100 ◦C with a specific heat of 4 kJ/(kg ·K). The aircoil has an efficiency of 50 %. Using the
above equations the aircoil will add 45.2 kW of heat to the gas flowing through the duct resulting in a duct
exit temperature of 332 K. These results are shown in Fig. 9.7.

9.2.7 Louvered HVAC Vents

The HVAC system being modeled may either have louvers that redirect the flow leaving a vent or the
orientation of the real vent may not lie along one of the axes in FDS. To define the flow direction for an
HVAC outlet, you can use the keyword UVW on VENT. UVW is the vector indicating the direction of flow from
the VENT. For example:

&OBST XB=1.0,2.0,0.0,1.0,0.0,1.0 /
&VENT XB=1.0,1.0,0.0,1.0,0.0,1.0, SURF_ID='HVAC', ID='HVAC OUTLET', UVW=-1,0,1 /

The above input defines a vent lying in the y-z plane facing in the −x direction. The flow vector indicates
that the flow from this vent is in the −x direction with a 45 degree up angle (the x and z components are
equal in size). FDS will set the tangential velocity of the vent to obtain the specified direction indicated by
UVW. This will only be done if the vent is inputting gas into the domain.
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Figure 9.7: (Left) Heat addition and (Right) duct exit temperature for the HVAC_aircoil case.

9.2.8 HVAC mass transport

If you set HVAC_MASS_TRANSPORT=.TRUE. on the MISC line this will call the HVAC mass transport
subroutine. This subroutine accounts for mass storage in the duct network and transport time of species and
energy. The current HVAC solver does not account for heat loss in the HVAC network.

To avoid the possibility of there being no available initialization data for a duct run (a series of ducts
connected to one another via ducts and nodes), DUCT_INTERP_TYPE in each comprising duct must be
consistent. This ensures that there is a non-internal duct node from which the duct run adopts its initial data.
If duct interpolation is set to NODE1 then data from the first node of the lowest numbered duct in the duct
run is initialized in the duct, if it is set to NODE2 then data from the second node of the highest numbered
duct in the duct run is initialized in the duct. DUCT_INTERP_TYPE is related to initialization only; if the
FDS domain is initialized as ambient/background data then there will be no difference in output when using
either duct interpolation method.

You can increase or decrease the number of cells each discretized duct has, to increase solution accuracy
or decrease simulation time respectively. The default value is set based upon a cell size of 100 mm. Where
the duct is not divisible by 100 mm, the number of cells is rounded up to the nearest integer (e.g. a duct
with a length of 1.05 m will have 11 cells). Ducts with a length of less than 100 mm adopt a cell number
of 2. If N_CELLS=1 is assigned to a duct then, even if HVAC_MASS_TRANSPORT=.TRUE., the HVAC mass
transport subroutine will not be called for this duct.

If you are using DEVCs to output spatially-integrated statistics as per Section 17.10.10 (such as VOLUME
MEAN, VOLUME INTEGRAL or MASS INTEGRAL) then be aware that, even if the integration volume bound
by XB encapsulates the spatial location of a duct, the quantity in the duct will not be recorded by the DEVC.
For example, if there is 1 m3 of species 1 initialized in an upstream FDS compartment which is transported
to a downstream FDS compartment via an HVAC network with a total volume greater than 1 m3, the value
of total mass of species 1 output by a DEVC recording the VOLUME INTEGRAL of DENSITY will reduce to
zero during the time for which it is in the HVAC network domain.

9.3 Pressure-Related Effects: The ZONE Namelist Group (Table 18.30)

FDS assumes pressure to be composed of a “background” component, p(z, t), plus a perturbation pressure,
p̃(x, t). Most often, p is just the hydrostatic pressure, and p̃ is the flow-induced spatially-resolved pertur-
bation. You can specify any number of sealed compartments within the computational domain that can
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have their own “background” pressures, and these compartments, or “pressure zones,” can be connected via
leakage and duct paths whose flow rates are tied to the pressure of the adjacent zones.

9.3.1 Specifying Pressure Zones

A pressure zone can be any region within the computational domain that is separated from the rest of the
domain, or the exterior, by solid obstructions. There is currently no algorithm within FDS to identify these
zones based solely on your specified obstructions. Consequently, it is necessary that you identify these zones
explicitly in the input file. The basic syntax for a pressure ZONE is:

&ZONE XB=0.3,1.2,0.4,2.9,0.3,4.5 /

This means that the rectangular region, 0.3 < x < 1.2, 0.4 < y < 2.9, 0.3 < z < 4.5, is assumed to be within
a sealed compartment. There can be multiple ZONEs declared. The indices of the zones, which are required
for the specification of leaks and fans, are determined simply by the order in which they are specified in the
input file. By default, the exterior of the computational domain is Zone 0. If there are no OPEN boundaries,
the entire computational domain will be assumed to be Zone 1.

There are several restrictions to assigning pressure zones. First, the declared pressure zones must be
completely within a region of the domain that is bordered by solid obstructions. If the sealed region is not
rectangular, FDS will extend the specified ZONE boundaries to conform to the non-rectangular region. It is
possible to “break” pressure zones by removing obstructions between them. An example of how to break
pressure zones is given below. Second, pressure zones can span multiple meshes, but it is recommended that
you check the pressure in each mesh to ensure consistency. Also, if the ZONE does span multiple meshes,
make sure that the specified rectangular coordinates do so as well. This allows FDS to determine the actual
extent of the ZONE independently for each mesh.

Note that if you plan to have one zone open up to another via the removal of an obstruction, make
sure that the coordinates of the two zones abut (i.e., touch) even if one of the zones includes the solid
obstruction that separates them. FDS recognizes that a zone boundary has been removed when two adjacent
cells belonging to two different zones have no solid obstruction between them. It is recommended that you
extend at least one of the zone boundaries into the solid obstruction separating the two zones. That way,
when the obstruction is removed, the newly created gas phase cells will be assigned to one or the other zone
and it will become obvious that two adjacent gas phase cells are of two different zones, at which point the
zones will merge and no longer have distinct background pressures.

For the special case where a zone has periodic boundaries (SURF_ID=’PERIODIC’ on VENT), you must
add PERIODIC=.TRUE. on the ZONE line.

Example Case: Pressure Rise in a Compartment

This example tests several basic features of FDS. A narrow channel, 3 m long, 0.002 m wide, and 1 m
tall, has air injected at a rate of 0.1 kg/m2/s over an area of 0.2 m by 0.002 m for 60 s, with a linear
ramp-up and ramp-down over 1 s. The total mass of air in the channel at the start is 0.00718 kg. The
total mass of air injected is 0.00244 kg. The domain is assumed two-dimensional, the walls are adiabatic,
and STRATIFICATION is set to .FALSE. simply to remove the slight change in pressure and density with
height. The domain is divided into three meshes, each 1 m long and each with identical gridding. We expect
the pressure, temperature and density to rise during the 60 s injection period. Afterwards, the temperature,
density, and pressure should remain constant, according to the equation of state. Figure 9.8 shows the results
of this calculation. The density matches exactly showing that FDS is injecting the appropriate amount of
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Figure 9.8: Output of pressure_rise test case.

mass. The steady state values of the pressure, density and temperature are consistent with the ideal values
obtained from the first law of thermodynamics.

Example Case: Breaking Pressure Zones

In this example, three simple compartments are initially isolated from each other and from the ambient
environment outside. Each compartment is a separate pressure zone. Air is blown into Zone 1 at a constant
rate of 0.1 kg/s, increasing its pressure approximately 2000 Pa by 10 s, at which time Zone 1 is opened to
Zone 2, decreasing the overall pressure in the two zones to roughly one-third the original value because the
volume of the combined pressure zone has been roughly tripled. At 15 s, the pressure is further decreased
by opening a door to Zone 3, and, finally, at 20 s the pressure returns to ambient following the opening of a
door to the outside. Figure 9.9 displays the pressure within each compartment. Notice that the pressures do
not come to equilibrium instantaneously. Rather, the PRESSURE_RELAX_TIME (on the PRES line) is applied
to bring the zones into equilibrium over a specified period of time. This is done for several reasons. First,
in reality doors and windows do not magically disappear as they do in FDS. It takes a finite amount of time
to fully open them, and the slowing of the pressure increase/decrease is a simple way to simulate the effect.
Second, relatively large pressure differences between zones wreak havoc with flow solvers, especially ones
like FDS that use a low Mach number approximation. To maintain numerical stability, FDS gradually brings
the pressures into equilibrium. This second point ought to be seen as a warning.

Since pressure zones are defined using XB, it might not be possible to define a complexly shaped set of
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Figure 9.9: Output of zone_break test cases. The figure on the left results from using a pressure relaxation
time of 0.5 s. The figure on the right uses 1 s, the default.

pressure zones using just the ZONE inputs. A work around for this is to define the complex zone as a series of
zones in the same manner you would divide a domain into multiple meshes. The check for merged pressure
zones only works if two zones were initially isolated at the start of the calculation (there must have been a
wall that was removed). Therefore, define an obstruction at the boundary of the zones that is removed after
the first time step.

Do not use FDS to study the sudden rupture of pressure vessels! Its low Mach number formulation does
not allow for high speed, compressible effects that are very important in such analyses. The zone breaking
functionality described in this example is only intended to be used for relatively small pressure differences
(<0.1 atm) between compartments. Real buildings cannot withstand substantially larger pressures anyway.

Example Case: Irregularly Shaped Zone

This example is similar to the ones in the previous section, except in this case, the pressure zone is L-shaped
and split across two meshes. The objective is simply to ensure that the specification of the pressure zone
is properly accounted for in the model. Figure 9.10 compares the predicted pressure in the compartment
compared to an exact solution. Air is injected into the compartment for 5 s, after which the compartment is
opened to a smaller compartment. At 15 s, the smaller compartment is opened to the outside.
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Figure 9.10: Output of zone_shape test case. Shown is the pressure in an L-shaped compartment that is
opened to another compartment at 5 s, and the outdoors at 15 s.

9.3.2 Leaks

With a few notable exceptions, like containment buildings for nuclear power plants, real world construction
is not air tight. Small gaps occur along windows and doors and where walls abut each other and the floors
and ceilings. As a compartment is pressurized by a fire, air will escape through these small gaps. This is
referred to as leakage.

Leakage is inherently a sub-grid scale phenomenon because the leakage area is usually very small. In
other words, it is not possible to define a leak directly on the numerical mesh. It is sometimes possible
to “lump” the leaks into a single mesh-resolvable hole, but this is problematic for two reasons. First, the
leakage area rarely corresponds neatly to the area of a single mesh cell-sized hole. Second, the flow speeds
through the hole can be large and cause numerical instabilities.

A better way to handle leakage is by exploiting the HVAC model. The compartment surface that is
leaking can be thought of as a large HVAC vent that connects via a very small duct to the outside. This
allows the leakage to be removed over a large area in the domain (just as it would be in reality) while
correctly capturing the actual area of the leakage path. There are two approaches to this. The first approach
is by exploiting only pressure zones. A pressure zone is a user-specified volume within the computational
domain that is entirely surrounded by solid obstructions. For example, the interior of a closed room can
be, and should be, declared a pressure zone. In this approach surfaces within a pressure zone are denoted
as leaking and those surfaces can be considered an HVAC vent that connects to the outside via a tiny duct
whose area is the leakage area. This leakage approach will prevent a compartment from seeing large pressure
changes as fires grow and decay, but it cannot account for effects like exterior wind or the stack effect. The
second approach is intended for leaks with well defined locations (a cracked open door where the crack size
is subgrid) or for leaks where the stack effect is important. It uses the local pressure (which includes the
zone pressure), which allows for leakage to vary in magnitude.

Pressure Zone Leakage

The pressure zone leakage approach is intended to capture the bulk leakage that occurs through walls. This
approach assumes that the amount of leaking gas is very small and that it will exchange sufficient heat as
it moves through a wall to be at the same temperature as the wall surface. With this approach the pressure
between the source and destination zones is used to compute a leakage flow via the HVAC model. That flow
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is then uniformly imposed over all surfaces designated as part of the leakage path. The first step is to define
pressure zones, leakage areas, and a description of the surfaces through which leaking occurs:

&ZONE XB=..., LEAK_AREA(0)=0.0001 /
&ZONE XB=..., LEAK_AREA(1)=0.0002, LEAK_AREA(0)=0.0003 /
&SURF ID='LEAKY EXTERIOR WALL',..., LEAK_PATH=1,0 /
&SURF ID='LEAKY INTERIOR WALL',..., LEAK_PATH=1,2 /

The first line designates a region of the computational domain to be Pressure Zone 1. Note that the order of
the ZONE lines is important; that is, the order implicitly defines Zone 1, Zone 2, etc. Zone 0 is by default
the ambient pressure exterior. In this example, a leak exists between Zone 1 and the exterior Zone 0, and
the area of the leak is 0.0001 m2 (1 cm by 1 cm hole, for example). Zone 2 leaks to Zone 1 (and vice
versa) with a leak area of 0.0002 m2. Zone 2 also leaks to the outside with an area of 0.0003 m2. Note that
zones need not be physically connected for a leak to occur, but in each zone, except for the exterior, there
must be some surface with a designated LEAK_PATH. Here, in Zones 1 and 2 there are surfaces defined by
both ’LEAKY EXTERIOR WALL’ and ’LEAKY INTERIOR WALL’ so as to provide a surface over which to
apply the leakage. Leakage is uniformly distributed over all of the solid surfaces assigned the LEAK_PATH.
The order of the two pressure zones designated by LEAK_PATH is unimportant, and the solid ostructions
where the leakage is applied need not form a boundary between the two zones.

The volume flow, V̇ , through a leak of area AL is given by

V̇leak = AL sign(∆p)

√
2
|∆p|
ρ∞

(9.6)

where ∆p is the pressure difference between the adjacent compartments (in units of Pa) and ρ∞ is the ambient
density (in units of kg/m3). The discharge coefficient normally seen in this type of formula is assumed to be
1.

In a typical building as the interior pressure rises, the leakage area will grow as small gaps, cracks, and
other leakage paths open up. Leakage tests performed according to test standards such as ASTM E 779
provide two additional data points to quantify this behavior. These are the LEAK_PRESSURE_EXPONENT

and the LEAK_REFERENCE_PRESSURE. The use of these additional inputs are shown in the equation below
as n and ∆pref respectively where AL,ref is given by LEAK_AREA.

AL = AL,ref

(
∆p

∆pref

)n−0.5

(9.7)

By default, n = 0.5 and ∆pref = 4 Pa, meaning that the leak area will not change with pressure unless you
specify an exponent other than 0.5.

The HVAC output quantities can be used to determine the leakage flows. FDS names the duct connecting
Zone A with Zone B ’LEAK A B’ and the duct nodes ’LEAK A B’ for the Zone A side of the leak and
’LEAK B A’ for the Zone B side. Note that for the duct names, FDS will use the lower numbered zone as
Zone A.

FDS is limited by default to a maximum of 200 ZONE inputs. This can be increased if needed by the
parameter MAX_LEAK_PATHS on the MISC line.

Localized Leakage

The local leakage approach is intended to represent leakage through a specific crack. For example, a cracked
open door might have a opening that is too small to resolve with the grid. One would; however, still want
to capture the fact that hot gases could escape the top of the crack and cold gases enter the bottom. The
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local leakage approach uses the local pressure rather than just the zone pressure. Therefore, one can define
multiple leakage paths for different windows, over the height of a door, or over the height of a tall stairwell
where stack effect might be important. To use this approach two VENT inputs are linked via an HVAC input
with TYPE_ID=’LEAK’. In the example below a 0.001 m2 leakage path is created between the VENT with
ID=’VENT 1’ and the VENT with ID=’VENT 2’. Note that the SURF_ID for a VENT with localized leakage
is not ’HVAC’. The input must correspond to a SURF input. Wall heat transfer will be computed based upon
the inputs on the referenced SURF input.

&VENT XB=...,SURF_ID='SURF 1',ID='VENT 1'/
&VENT XB=...,SURF_ID='SURF 2',ID='VENT 2'/
&HVAC ID='LEAK1',TYPE_ID='LEAK',VENT_ID='VENT 1',VENT2_ID='VENT 2',AREA=0.001/

This will create a duct with the name ’LEAK1’ whose two nodes will be named VENT_ID and VENT2_ID.
If the leakage path is to connect to the ambient outside the domain, then set VENT2_ID=’AMBIENT’. In this
case the second node will be the first node name with AMB appended (e.g. ’VENT 1 AMB’). Note that each
VENT must lie in one pressure zone; however, it may span more than one MESH.

Unlike the zone leakage approach, this approach has the option to preserve the energy of the gas flowing
through the leak. For example, for door crack using with pressure zone leakage, the outflowing gas at the top
of the door would always be the same temperature as the outside of the door. To maintain hot gas flowing out
of the leak, add add LEAK_ENTHALPY=.TRUE. to the HVAC input. For each outflowing wall cell, this will
compute the enthalpy difference between the temperature of the leak flow and the temperature of the surface
and add it as a source of heat to the adjacent gas cell. The default value is LEAK_ENTHALPY=.FALSE.

This approach also has the option of changing the flow loss by specifying LOSS on the HVAC input. The
default is LOSS=1; the same as for pressure zone leakage.

Note, for this approach it is not required that one have pressure zones defined; however, it is recom-
mended to do so if different pressure zones do in fact exist in the model.

Example Case: door_crack

This example involves a small compartment that contains a fan in one wall and a closed door with leakage
at its bottom in the opposite wall. A small (160 kW) fire is added to the compartment. Initially, the pressure
rises due to the heat from the fire and the fan blowing air into the compartment. Eventually the pressure rise
inside the compartment exceeds the maximum pressure of the fan, at which point the compartment begins
to exhaust from both the fan and the leakage. Pressure will continue to rise due to the fire until the pressure
relief due to leakage and back flow through the fan equals the pressure increase from the fire.

9.4 Pressure Boundary Conditions

In some situations, it is more convenient to specify a pressure, rather than a velocity, at a boundary. Suppose,
for example, that you are modeling the interior of a tunnel, and a wind is blowing at one of the portals that
affects the overall flow within the tunnel. If (and only if) the portal is defined using an OPEN vent, then the
dynamic pressure at the boundary can be specified like this:

&VENT XB=..., SURF_ID='OPEN', DYNAMIC_PRESSURE=2.4, PRESSURE_RAMP='wind' /
&RAMP ID='wind', T= 0.0, F=1.0 /
&RAMP ID='wind', T=30.0, F=0.5 /

.

.
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Figure 9.11: Output of door_crack test case. Symbols are expected values.

The use of a dynamic pressure boundary affects the FDS algorithm as follows. At OPEN boundaries, the
hydrodynamic pressure (head) H is specified as

H = DYNAMIC_PRESSURE/ρ∞ + |u|2/2 (outgoing)

H = DYNAMIC_PRESSURE/ρ∞ (incoming) (9.8)

where ρ∞ is the ambient density and u is the most recent value of the velocity on the boundary. The
PRESSURE_RAMP allows you to alter the pressure as a function of time. Note that you do not need to ramp
the pressure up or down starting at zero, like you do for various other ramps. The net effect of a positive
dynamic pressure at an otherwise quiescent boundary is to drive a flow into the domain. However, a fire-
driven flow of sufficient strength can push back against this incoming flow.

The following lines, taken from the sample case, pressure_boundary, demonstrates how to specify
a time-dependent pressure boundary at the end of a tunnel. The tunnel is 10 m long, 1 m wide, 1 m tall with
a fire in the middle and a pressure boundary imposed on the right side. The left side (XMIN) is just an OPEN

boundary with no pressure specified. It is assumed to be at ambient pressure.

&VENT MB = 'XMIN' SURF_ID = 'OPEN' /
&VENT MB = 'XMAX' SURF_ID = 'OPEN', DYNAMIC_PRESSURE=2.4, PRESSURE_RAMP='wind_ramp' /
&RAMP ID='wind_ramp', T= 0., F= 1. /
&RAMP ID='wind_ramp', T=15., F= 1. /
&RAMP ID='wind_ramp', T=16., F=-1. /

Figure 9.12 shows two snapshots from Smokeview taken before and after the time when the positive pressure
is imposed at the right portal of a tunnel. The fire leans to the left because of the preferential flow in that
direction. It leans back to the right when the positive pressure is directed to become negative.
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Figure 9.12: Snapshots from the sample case pressure_boundary showing a fire in a tunnel leaning left,
then right, due to a positive, then negative, pressure imposed at the right portal.
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9.5 Special Flow Profiles

By default, the air injected at a vent has a uniform or “top hat” velocity profile, but the parameter PROFILE
on the SURF line can yield other profiles.

Parabolic

PROFILE=’PARABOLIC’ produces a parabolic profile with VEL (m/s) being the maximum velocity or
VOLUME_FLOW (m3/s) being the desired volume flow. As an example, the test case in the Flowfields

examples folder called parabolic_profile.fds demonstrates how you can create a circular or rectan-
gular vent, each with a parabolic inlet profile. The two VENT lines below create circular and rectangular
inlets, respectively, each of which inject air (or the background gas) at a rate of 0.5 m3/s into the compart-
ment.

&SURF ID='BLOW', VOLUME_FLOW=-0.5, PROFILE='PARABOLIC' /
&VENT SURF_ID='BLOW', XB=-3,1,-3,1,0,0, RADIUS=2., XYZ=-1,-1,0 /
&VENT SURF_ID='BLOW', XB= 3,5,-2,1,0,0 /

The purpose of the test case is to ensure that the proper amount of gas (in this case nitrogen) is forced into
the compartment, as confirmed by the pressure rise. Figure 9.13 displays a comparison of the calculated
versus the exact pressure rise in a large compartment with these two parabolic vents. The pressure should
rise according to the equation and analytical solution:

dp
dt

=
γ V̇
V

p =⇒ p(t)− p0 = p0

(
e

γ V̇
V t −1

)
(9.9)

where the ratio of specific heats, γ = 1.4, volume flow rate, V̇ = 1 m3/s, volume, V = 4000 m3, and
ambient pressure, p0 = 101325 Pa. Note that to obtain this simple result, FDS was run with the option
CONSTANT_SPECIFIC_HEAT_RATIO set to true.
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Figure 9.13: Results of the parabolic_profile test case

Boundary Layer (Circular Vent)

PROFILE=’BOUNDARY LAYER’may be used for circular vents created using RADIUS. By adding VEL_BULK
on the SURF line together with VEL, FDS will produce a plug flow core profile, with max velocity given by
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VEL, and a quadradic profile in the boundary layer. The form of the profile is illustrated in Fig. 9.14 for a
circular vent. The functional form of the velocity profile (here taken a vertical profile) is

w(r) =

 wmax if r ≤ R−δ

wmax

(
1−
(

r−(R−δ )
δ

)2
)

if R−δ < r ≤ R
(9.10)

The bulk velocity is the volumetric flow rate divided by the circular flow area. VEL_BULK is negative
pointing into the domain. The boundary layer thickness is δ . This feature is handy for dealing with the case
where the maximum velocity is higher than the bulk velocity. Here is an example input file line:

&SURF ID='JET', VEL=-69, VEL_BULK=-53, PROFILE='BOUNDARY LAYER', ... /

∂w
∂ r

= 0wmax

Rd
Figure 9.14: Boundary layer profile.
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Chapter 10

Atmospheric Effects

The chapter describes techniques for modeling the atmospheric boundary layer.

10.1 Temperature Stratification

Typically, in the first few hundred meters of the atmosphere, the temperature decreases several degrees
Celsius per kilometer. This small temperature change is important when considering the rise of smoke since
the temperature of the smoke decreases rapidly as it rises. The LAPSE_RATE of the atmosphere can be
specified on the MISC line in units of ◦C/m. A negative sign indicates that the temperature decreases with
height. This need only be set for outdoor calculations where the height of the domain is tens or hundreds of
meters. The default value of the LAPSE_RATE is 0 ◦C/m.

Alternatively, you can specify RAMP_TMP0_Z on the MISC line if you want a non-linear change in
temperature with height. For example,

&MISC ..., RAMP_TMP0_Z='T profile', TMPA=34.5, ... /

&RAMP ID='T profile', Z= 0.001 , F= 1.0258 /
&RAMP ID='T profile', Z= 0.500 , F= 1.0019 /
&RAMP ID='T profile', Z= 1.000 , F= 1.0000 /
&RAMP ID='T profile', Z= 1.900 , F= 0.9986 /
&RAMP ID='T profile', Z= 3.000 , F= 0.9977 /
&RAMP ID='T profile', Z= 4.000 , F= 0.9972 /

The value of F is the ratio of the temperature in degrees K to TMPA.
By default, FDS assumes that the density and pressure decrease with height, regardless of the application

or domain size. For most simulations, this effect is negligible, but it can be turned off completely by setting
STRATIFICATION=.FALSE. on the MISC line.

10.1.1 Stack Effect

Tall buildings often experience buoyancy-induced air movement due to temperature differences between the
interior and exterior, known as stack effect [23]. These temperature differences create flows within vertical
shafts (stairwells, atriums, elevator shafts, etc.) due to leaks or openings at different levels. To simulate this
phenomenon in FDS, you must include the entire building, or a substantial fraction of it, both inside and out,
in the computational domain. It is important to capture the pressure and density decrease in the atmosphere
based on the specified temperature profile that is entered on the MISC line.
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For the case where the stack flow is through small leakage paths, divide the building into one or more
pressure ZONEs. The leakage paths can be defined in terms of HVAC components. Note that the leakage
model combines all leaky surfaces over the entire height of the building and as a result averages out the
pressure gradients. For doing stack effect calculations individual leakage paths should be defined. A simple
example is described next.

Example Case: Atmospheric_Effects/stack_effect

The stack_effect test case is a two-dimensional simulation of a 100 m tall building whose interior air tem-
perature is slightly warmer than its exterior. The building has leakage paths at the top and ground floors
only. Since the inside air temperature is slightly warmer, the inside air pressure is slightly higher as well,
and it drives air out of the building and in turn draws air into the building at the ground level. The interior
air temperature, Tb, is initially 20 ◦C (293 K), and the exterior air temperature, T∞, is 10 ◦C (283 K). The
LAPSE_RATE is set to 0 ◦C/m; thus, T0(z) = T∞ outside the building and T0(z) = Tb inside the building. Two
small leakage openings are defined 2.5 m above the ground floor and 2.5 m below the roof using the HVAC
solver. Each opening is given an area of 0.01 m2 and a loss coefficient of 2 (e.g., an entrance loss into the
leak path of 1 and and exit loss out of the leak path of 1 both of which represent a sharp edge opening).

The initial density stratification inside and outside the building can be calculated using the relation:

ρ0(z)
ρ∞

= exp
(
− gW

RT0
z
)

(10.1)

where R is the universal gas constant, g is the acceleration of gravity, and W is the average molecular weight
of the air, z is the height above the GROUND_LEVEL, and T0 is the ambient temperature. Applying this
formula to the external and internal locations at the lower and upper vents results in densities of 1.2412,
1.1989, 1.2272, and 1.1858 kg/m3, respectively.

Since the openings in the building are equally spaced over its height, the neutral plane should be close
to its midpoint. This can be computed from:

∆H
Hn

= 1+
Tb

T∞

(10.2)

where Hn is the neutral plane height above the bottom vent and ∆H = 95 m is the distance between the
leak points. This gives a neutral plane of 46.68 m above the lower vent or 49.18 m above the bottom of
the building. Note that this is close to the midpoint value of 50 m above the bottom of the building. The
pressure difference across the building’s wall is computed from

∆p =
W p0(z)g∆z

R

(
1

T∞

− 1
Tb

)
(10.3)

where ∆z is the distance from the leak point to the neutral plane. Using the neutral plane location, the ∆z
values are -46.68 m for the lower vent and +48.32 m for the upper vent which respectively result in lower
and upper vent pressure differences of -19.4 Pa and +20.4 Pa. Using the loss of 2 and the pressure difference
in the HVAC momentum equation results in a steady-state inflow velocity at the bottom of 3.95 m/s and an
outflow velocity at the top of 4.15 m/s. Results for velocity and density are shown in Fig. 10.1.

10.2 Wind

If you want to simulate a wind, set U0, V0, and W0 to the three components of the prevailing wind field on
the MISC line. By default, their values are 0 m/s. For example, if the mean wind is 10 m/s in the northeast
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Figure 10.1: (Left) Velocity at the upper and lower vents for the stack_effect case. (Right) Upper and
lower exterior and interior densities.

direction, set both U0 and V0 to 7.07 m/s. Setting these values, however, does not ensure that this flow field
will persist. There are several ways to maintain the wind field. One way is to specify the normal component
of the wind velocity at one or two exterior boundaries of the computational domain. This is essentially like
creating a giant wall of fans on one side of the domain and a passive open boundary on the other. This is not
a particularly good strategy to use because the lateral (i.e. tangential to the wind field) boundary conditions
are not well-defined.

The better way to specify a wind field is as follows. Suppose there are anemometers located at specific
locations within the domain which continuously record wind speed and direction. The process of steering
the solution of the mass, momentum, and energy equations to match the statistics of the data gathered at the
weather stations is known as data assimilation. This branch of modeling is early in its development, but
very sophisticated (translation: complicated) methods already exist [24] and are employed in operational
weather forecasting models. In FDS, you may invoke the most rudimentary of data assimilation techniques,
a method called nudging, where you add a mean forcing term to the momentum equation to “nudge” the
solution toward a desired result. Currently, FDS can only affect the mean flow velocities. To turn on this
capability, specify the mean wind using U0 and V0 (rarely would you use W0), along with the logical param-
eter MEAN_FORCING(1:2)=.TRUE. on MISC. This will cause FDS to drive the mean velocity components
toward the values of U0 and V0. For example, to point the wind in the northeast direction (assuming that the
positive x axis points eastward) at 10 m/s, set the following parameters on the MISC line:

&MISC ..., MEAN_FORCING(1:2)=.TRUE., U0=7.07, V0=7.07, DT_MEAN_FORCING=0.1,
RAMP_U0_T='t-ramp', ... , RAMP_V0_Z='z-ramp' /

Note that you must also specify a time scale for relaxation, DT_MEAN_FORCING. The shorter this time
scale, the faster the flow field will “catch up” to the mean wind, but at the expense of possibly washing out
important flow structures. Try several values of this time scale for your particular simulation to determine
what is appropriate for your case. There is no firm guidance in the atmospheric modeling literature.

The velocity components U0, V0, and W0 can be made functions of time and/or height using the RAMP
functions: RAMP_U0_T, RAMP_V0_T, and RAMP_W0_T to vary the velocity components with time; and
RAMP_U0_Z, RAMP_V0_Z, and RAMP_W0_Z to vary the velocity components with height. For example,

&RAMP ID='t-ramp', T= 0., F=0. /
&RAMP ID='t-ramp', T=100., F=1. /
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&RAMP ID='z-ramp', Z= 0., F=1.0 /
&RAMP ID='z-ramp', Z=200., F=1.5 /
&RAMP ID='z-ramp', Z=500., F=1.8 /

The parameter F represents the fraction of the specified velocity component as a function of time T (s) or
height Z (m).

For an outdoor flow, all other boundaries (except the ground) should be set to OPEN. You may omit a
region of the flow domain from forcing using the HOLE feature. If a HOLE is used with MEAN_FORCING it
is advisable to also set PROJECTION=.TRUE. on MISC; otherwise the combination of U0 in the bulk region
and zero velocity in the HOLE region creates an initial divergence error that will take some time to wash out
of the domain.

Example Wind Simulation

An input file called wind_example.fds in the Atmospheric_Effects folder provides an example of
a wind simulation. The computational domain is a flat landscape that is 1 km by 1 km by 100 m high.
There are various rectangular blocks scattered about to represent buildings. The background wind velocity
components vary with height, z, and time, t:

u(z, t) = 10 cos
(

2π t
50

) ( z
5

)0.2
m/s ; v(z, t) = 10 sin

(
2π t
50

) ( z
5

)0.2
m/s (10.4)

The 360◦ turn of the wind in 50 s is not realistic, but this case is intended to test the ramp functionality. The
plots in Fig. 10.2 display some results of the simulation. On the left is a plot showing the mean velocity
components of the simulated wind field compared to the specified (ideal) values. Notice that the simulated
wind field lags the specified field by roughly 1 s because the relaxation parameter DT_MEAN_FORCING was
set to 1 s. This time scale falls into the denominator of the forcing term that “nudges” the simulated wind
to follow the specified time history. If it is too small, the “nudging” term becomes too dominant. The right
hand plot of Fig. 10.2 displays the specified wind profile compared to the simulation after the wind has
turned full circle. The two profiles should be roughly aligned to indicate that the lateral boundary conditions
of the mean forcing scheme are working properly.
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specified wind profile.

124



10.2.1 Specifying a “Wall of Wind”

An alternative to MEAN_FORCING is to specify a power law wind profile at an external boundary of the
computational domain. This essentially creates a “wall of wind” and for early versions of FDS it was the
recommended method for specifying a wind. However, the MEAN_FORCING technique described above is
preferable because it handles the lateral boundaries of the computational domain in a more natural way.

To specify a “wall of wind”, set PROFILE=’ATMOSPHERIC’ on the SURF line that is assigned to an
exterior lateral boundary of the computational domain. This generates a power law atmospheric wind profile
of the form u = u0(z/z0)

p where z is the height above the ground. If an atmospheric profile is prescribed,
also prescribe Z0 for z0 and PLE for p. VEL specifies the reference velocity u0. Note that z0 is not the ground,
but rather the height above the ground where the wind speed is measured, like an elevated weather station.
It is assumed that the ground is located at 0 m; to change this assumption, set GROUND_LEVEL on the MISC
line to be the appropriate elevation. Be careful not to apply an atmospheric velocity profile (e.g. negative z)
below GROUND_LEVEL or FDS will stop with an error.
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Chapter 11

User-Specified Functions

Many of the parameters specified in the FDS input file are fixed constants. However, there are several pa-
rameters that may vary in time, temperature, or space. The namelist groups, RAMP and TABL, allow you to
control the behavior of these parameters. RAMP allows you to specify a function with one independent vari-
able (such as time) and one dependent variable (such as velocity). TABL allows you to specify a function of
multiple independent variables (such as a solid angle) and multiple dependent variables (such as a sprinkler
flow rate and droplet speed).

11.1 Time-Dependent Functions

At the start of any calculation, the temperature is ambient everywhere, the flow velocity is zero every-
where, nothing is burning, and the mass fractions of all species are uniform. When the calculation starts
temperatures, velocities, burning rates, etc., are ramped-up from their starting values because nothing can
happen instantaneously. By default, everything is ramped-up to their prescribed values in approximately 1 s.
However, you can control the rate at which things turn on, or turn off, by specifying time histories either
with pre-defined functions or with user-defined functions. The parameters TAU_Q, TAU_T, and TAU_V in-
dicate that the heat release rate (HRRPUA); surface temperature (TMP_FRONT); and/or normal velocity (VEL,
VOLUME_FLOW), or MASS_FLUX_TOTAL are to ramp up to their prescribed values in TAU seconds and re-
main there. To prescribe different heat release rate ramps, the TAU_Q parameter can be defined as a negative
value (t-squared growth rate) or a positive value (tanh growth rate), which results in a time-dependent heat
release rate as

Q̇(t) =

 Q̇0
( t

τ
)2 if TAU_Q is negative

Q̇0 · tanh
( t

τ
)

if TAU_Q is positive
(11.1)

where Q̇0 is the user-specified heat release rate. If the fire ramps up following a t-squared curve, then it
remains constant after TAU_Q seconds. These rules apply to TAU_T and TAU_V as well. The default value
for all TAUs is 1 s. If something other than a tanh or t-squared ramp up is desired, then a user-defined
function must be input. To do this, set RAMP_Q, RAMP_T or RAMP_V equal to a character string designating
the ramp function to use for that particular surface type, then somewhere in the input file generate lines of
the form:

&RAMP ID='rampname1', T= 0.0, F=0.0 /
&RAMP ID='rampname1', T= 5.0, F=0.5 /
&RAMP ID='rampname1', T=10.0, F=0.7 /
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Here, T is the time, and F indicates the fraction of the heat release rate, wall temperature, velocity, mass
fraction, etc., to apply. Linear interpolation1 is used to fill in intermediate time points. Note that each set
of RAMP lines must have a unique ID and that the lines must be listed with monotonically increasing T.
Note also that the TAUs and the RAMPs are mutually exclusive. For a given surface quantity, both cannot be
prescribed. As an example, a simple blowing vent can be controlled via the lines:

&SURF ID='BLOWER', VEL=-1.2, TMP_FRONT=50., RAMP_V='BLOWER RAMP', RAMP_T='HEATER
RAMP' /

&RAMP ID='BLOWER RAMP', T= 0.0, F=0.0 /
&RAMP ID='BLOWER RAMP', T=10.0, F=1.0 /
&RAMP ID='BLOWER RAMP', T=80.0, F=1.0 /
&RAMP ID='BLOWER RAMP', T=90.0, F=0.0 /
&RAMP ID='HEATER RAMP', T= 0.0, F=0.0 /
&RAMP ID='HEATER RAMP', T=20.0, F=1.0 /
&RAMP ID='HEATER RAMP', T=30.0, F=1.0 /
&RAMP ID='HEATER RAMP', T=40.0, F=0.0 /

Use TAU_T or RAMP_T to control the ramp-ups for surface temperature. The surface temperature at time t,
Tw(t), is

Tw(t) = T0 + f (t)(TMP_FRONT−T0) (11.2)

where f (t) is the result of evaluating the RAMP_T at time t, T0 is the ambient temperature, and TMP_FRONT

is specified on the same SURF line as RAMP_T. Use TAU_MF(N) or RAMP_MF(N) to control the ramp-ups
for either the mass fraction or mass flux of species N. For example:

&SURF ID='...', MASS_FLUX(1:2)=0.1,0.3, SPEC_ID(1:2)='ARGON','NITROGEN',
TAU_MF(1:2)=5.,10. /

indicates that argon and nitrogen are to be injected at rates of 0.1 kg/(m2 · s) and 0.3 kg/(m2 · s) over time
periods of approximately 5 s and 10 s, respectively.

Table 11.1 lists the various quantities that can be controlled by RAMPs.

11.2 Temperature-Dependent Functions

Thermal properties like conductivity and specific heat can vary significantly with temperature. In such cases,
use the RAMP function like this:

&MATL ID = 'STEEL'
FYI = 'A242 Steel'
SPECIFIC_HEAT_RAMP = 'c_steel'
CONDUCTIVITY_RAMP = 'k_steel'
DENSITY = 7850. /

&RAMP ID='c_steel', T= 20., F=0.45 /
&RAMP ID='c_steel', T=377., F=0.60 /
&RAMP ID='c_steel', T=677., F=0.85 /

&RAMP ID='k_steel', T= 20., F=48. /
&RAMP ID='k_steel', T=677., F=30. /

1By default, FDS uses a linear interpolation routine to find time or temperature-dependent values between user-specified points.
The default number of interpolation points is 5000, more than enough for most applications. However, you can change this value
by specifying NUMBER_INTERPOLATION_POINTS on any RAMP line.
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Table 11.1: Parameters for controlling the time-dependence of given quantities.

Quantity Group Input Parameter(s) TAU RAMP ID

Heat Release Rate SURF HRRPUA TAU_Q RAMP_Q

Heat Flux SURF NET_HEAT_FLUX, etc. TAU_Q RAMP_Q

Temperature SURF TMP_FRONT TAU_T RAMP_T

Velocity SURF VEL TAU_V RAMP_V

Volume Flux SURF VOLUME_FLOW TAU_V RAMP_V

Mass Flux SURF MASS_FLUX_TOTAL TAU_V RAMP_V

Mass Fraction SURF MASS_FRACTION(N) TAU_MF(N) RAMP_MF(N)

Mass Flux SURF MASS_FLUX(N) TAU_MF(N) RAMP_MF(N)

Particle Mass Flux SURF PARTICLE_MASS_FLUX TAU_PART RAMP_PART

External Heat Flux SURF EXTERNAL_FLUX TAU_EF RAMP_EF

Pressure VENT DYNAMIC_PRESSURE PRESSURE_RAMP

Flow PROP FLOW_RATE FLOW_TAU FLOW_RAMP

Gravity MISC GVEC(1) RAMP_GX

Gravity MISC GVEC(2) RAMP_GY

Gravity MISC GVEC(3) RAMP_GZ

Note that for temperature ramps, as opposed to time ramps, the parameter F is the actual physical quantity,
not just a fraction of some other quantity. Thus, if CONDUCTIVITY_RAMP is used, there should be no value
of CONDUCTIVITY given. Note also that for values of temperature, T, below and above the given range, FDS
will assume a constant value equal to the first or last F specified. Note also that the DENSITY of a material
cannot be controlled with a RAMP function.

11.3 Spatially-Dependent Velocity Profiles

Similar to using PROFILE=‘ATMOSPHERIC’ on SURF, it is possible to specify PROFILE=‘RAMP’ to gen-
erate 1D or 2D profiles of the normal component of velocity on a surface. The following code generates a
u(z) profile on the ‘XMIN’ boundary.

&SURF ID='inlet', VEL=-7.72, PROFILE='RAMP', RAMP_V_Z='u_prof' /
&VENT MB='XMIN', SURF_ID='inlet'/

&RAMP ID='u_prof', T=0., F=0. /
&RAMP ID='u_prof', T=0.0098, F=0. /
&RAMP ID='u_prof', T=0.01005, F=0.2474 /
&RAMP ID='u_prof', T=0.01029, F=0.4521 /
&RAMP ID='u_prof', T=0.01077, F=0.6256 /
&RAMP ID='u_prof', T=0.01174, F=0.7267 /
&RAMP ID='u_prof', T=0.01368, F=0.8238 /
&RAMP ID='u_prof', T=0.01562, F=0.8795 /
&RAMP ID='u_prof', T=0.01756, F=0.9378 /
&RAMP ID='u_prof', T=0.0195, F=0.9663 /
&RAMP ID='u_prof', T=0.02144, F=0.9922 /
&RAMP ID='u_prof', T=0.02338, F=0.9987 /
&RAMP ID='u_prof', T=0.02532, F=1 /
&RAMP ID='u_prof', T=0.0588, F=1 /
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Note that V indicates the velocity component normal to the surface. You can also specify RAMP_V_X

and RAMP_V_Y and add these to the SURF. Note that only profiles in the planar directions will affect a given
surface. That is, if the surface is oriented in the y− z plane, only RAMP_V_Y and RAMP_V_Z apply. In the
RAMP definition T is the independent variable and F is the dependent variable. In this example, T is the z
coordinate in meters and F is the factor multiplying VEL on the SURF line. Two ramps may be applied to a
surface.

T does not need to be directly related to the FDS mesh. The velocity points will be interpolated linearly
by the ramp function. In fact, this functionality is convenient for taking experimental data directly as a
boundary condition to FDS. You basically just need to list T and F from the data (you can set VEL=-1 if you
want). The results for this particular case can be seen in the section, “Flow Over a Backward Facing Step”,
in the FDS Verification Guide [3]. In this problem, the step height is h = 0.0098 m, and the specification of
the inlet profile is critical to correctly matching the reattachment point downstream of the step.
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Chapter 12

Chemical Species

FDS was designed primarily to study fire phenomena, and much of the basic chemistry of combustion is
handled with a minimum of user inputs. However, there are many applications in which you might want to
simulate the movement of gases in the absence of fire, or additional chemical species might be added to a
simulation that involves fire. Gas species are defined with the input group SPEC. This input group is used to
define both primitive gas species and lumped species (mixtures of one or more primitive SPEC).

There are different roles that a gas species might play in a simulation. A gas species might be explicitly
tracked. In other words, a transport equation is solved for it. A gas species might just serve as the “back-
ground” species. Note that no transport equation is needed for the background species as it is whatever mass
remains after all other tracked species have been accounted for. Or, a gas species might be one component
of a mixture of gases that are transported together. For example, FDS exploits the idea that the products
of combustion from a fire mix and travel together; you only need to solve one transport equation for this
“lumped species.” The default combustion model in FDS assumes that the reaction is mixing-controlled,
and transport equations for only the lumped species—Fuel and Products—are solved (the lumped species
Air is the default background). There is no reason to solve individual (and costly) transport equations for
the major reactants and products of combustion—Fuel, O2, CO2, H2O, N2, CO and soot—because they are
all pre-tabulated functions of the three lumped species. More detail on combustion is given in Chapter 13.
For the moment, just realize that you need not, and should not, explicitly list the reactants and products of
combustion using SPEC lines if all you want is to model a fire involving a hydrocarbon fuel.

12.1 Specifying Primitive Species

The SPEC input is used to define a gas species in FDS. Once defined the species can be tracked as a single
species (i.e., a primitive species) and/or the species can be used as part of one or more lumped species, also
defined with SPEC. It is possible for a species to be both part of a lumped species and tracked separately.
Often an extra gas introduced into a calculation is the same as a product of combustion, like water vapor
from a sprinkler or carbon dioxide from an extinguisher. These gases are tracked separately. Thus, water
vapor generated by the combustion is tracked via the Products lumped species variable and water vapor
generated by evaporating sprinkler droplets is tracked via its own transport equation.

If a species is only to be used as part of one or more lumped species, LUMPED_COMPONENT_ONLY=.TRUE.
must be added to the SPEC line. This tells FDS not to allocate space for the species in the array of tracked
gases. If a species is to be used as the background species, the parameter BACKGROUND=.TRUE. should be
set on the SPEC line. This also tells FDS not to allocate space for the species in the array of tracked gases. A
species with LUMPED_COMPONENT_ONLY=.TRUE. cannot be used as an individual species, and it cannot be
used as the background species. However, a primitive species with BACKGROUND=.TRUE. can also be used
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as part of a lumped species definition. Note that the default background species is AIR which is defined as
a lumped species consisting of N2, O2, CO2, and H2O. If no background species is defined in the input file,
then FDS will create the background species of AIR by internally creating the input lines shown in Example
2 in Section 12.2.

Note that while you can define as many species using SPEC as you wish in an input file, any namelist
input tied to a list of species, such as any SPEC_ID input or MASS_FRACTION input, is limited to using no
more than 20 species.

12.1.1 Basics

Each SPEC line should include at the very least the name of the species via a character string, ID. Once
the extra species has been declared, you introduce it at surfaces via the parameters MASS_FRACTION(:) or
MASS_FLUX(:) along with the character array SPEC_ID(:). A very simple example of how a gas—in this
case hydrogen—can be introduced into the simulation is given by the simple input file called gas_filling.fds.
The relevant lines are as follows:

&SPEC ID='HYDROGEN' /
&SURF ID='LEAK', SPEC_ID(1)='HYDROGEN', MASS_FLUX(1)=0.01667, RAMP_MF(1)='leak_ramp' /
&RAMP ID='leak_ramp', T= 0., F=0.0 /
&RAMP ID='leak_ramp', T= 1., F=1.0 /
&RAMP ID='leak_ramp', T=180., F=1.0 /
&RAMP ID='leak_ramp', T=181., F=0.0 /
&VENT XB=-0.6,0.4,-0.6,0.4,0.0,0.0, SURF_ID='LEAK', COLOR='RED' /
&DUMP MASS_FILE=.TRUE. /

The hydrogen is injected through a 1 m by 1 m vent at a rate of 0.01667 kg/(m2 · s) and shut off after
3 min. The total mass of hydrogen at that point ought to be 3 kg (see Fig. 12.1). Notice that no properties
were needed for the HYDROGEN because it is a species whose properties are included in Table 12.1. The
background species in this case is assumed to be air. The mass flow rate of the hydrogen is controlled via
the ramping parameter RAMP_MF(1). The parameter MASS_FILE=.TRUE. instructs FDS to produce an
output file that contains a time history of the hydrogen mass.
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Figure 12.1: Hydrogen mass vs. time for gas_filling test case.
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Initial Conditions

If the initial mass fraction of the gas is something other than zero, then the parameter MASS_FRACTION_0
is used to specify it. For example, if you want the initial concentration in the domain to be 90% background
(air) diluted with 10% argon, use

&SPEC ID='ARGON', MASS_FRACTION_0=0.1 /

Specifying Humidity

If you are using the default background lumped species AIR, then you can specify HUMIDITY on MISC to
set the ambient mass fraction of water vapor. HUMIDITY is the relative humidity of water vapor in units of
%. It is 40 % by default.

If you are defining the primitive species of WATER VAPOR, then MASS_FRACTION_0 is independent of
HUMIDITY. That is setting MASS_FRACTION_0 for the species WATER VAPOR will not change the ambient
humidity, it will add additional water vapor.

12.1.2 Specifying Gas and Liquid Species Properties

There are several options for specifying the properties of gas and liquid species.

Option 1: FDS Defined Species

Gases and liquids whose properties are tabulated within FDS are listed in Table 12.1. The physical properties
of these species are known and do not need to be specified. When using one of these gases you need only
specify the correct ID and provide, if needed, the initial mass fraction. FDS will then use precompiled data
to compute the various thermophysical properties from 0 K to 5000 K.
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Table 12.1: Optional gas and liquid species [25]

Species Mol. Wt. Formula σ ε/k Liquid RadCal
(g/mol) (Å) (K) Surrogate

ACETONE 58.07914 C3H6O 4.6 560.2 Y MMA

ACETYLENE 26.037280 C2H2 4.033 231.8 PROPYLENE

ACROLEIN 56.063260 C3H4O 4.549 576.7 Y MMA

AMMONIA 17.03052 NH3 2.9 558.3 Y
ARGON 39.948000 Ar 3.42 124.0 Y
BENZENE 78.11184 C6H6 5.349 412.3 Y TOLUENE

BUTANE 58.122200 C4H10 4.687 531.4 Y PROPANE

CARBON 12.0107 C 2.94 74.8
CARBON DIOXIDE 44.009500 CO2 3.941 195.2 CARBON DIOXIDE

CARBON MONOXIDE 28.010100 CO 3.690 91.7 Y CARBON MONOXIDE

CHLORINE 70.906 Cl2 4.217 316.0 Y
DODECANE 170.33484 C12H26 4.701 205.78 Y N-HEPTANE

ETHANE 30.069040 C2H6 4.443 215.7 Y ETHANE

ETHANOL 46.068440 C2H5OH 4.530 362.6 Y METHANOL

ETHYLENE 28.053160 C2H4 4.163 224.7 Y ETHYLENE

FORMALDEHYDE 30.025980 CH2O 3.626 481.8 Y METHANOL

HELIUM 4.002602 He 2.551 10.22 Y
HYDROGEN 2.015880 H2 2.827 59.7 Y
HYDROGEN ATOM 1.007940 H 2.31 123.6
HYDROGEN BROMIDE 80.911940 HBr 3.353 449.0 Y
HYDROGEN CHLORIDE 36.460940 HCl 3.339 344.7 Y
HYDROGEN CYANIDE 27.025340 HCN 3.63 569.1 Y
HYDROGEN FLUORIDE 20.006343 HF 3.148 330.0 Y
HYDROGEN PEROXIDE 34.014680 H2O2 3.02 106.5 Y
HYDROPEROXY RADICAL 33.006740 HO2 3.02 106.5
HYDROXYL RADICAL 17.007340 OH 2.66 92.1
ISOPROPANOL 60.095020 C3H7OH 4.549 576.7 Y METHANOL

LJ AIR 28.854760 3.711 78.6
METHANE 16.042460 CH4 3.758 148.6 Y METHANE

METHANOL 32.041860 CH3OH 3.626 481.8 Y METHANOL

N-DECANE 142.281680 C10H22 5.233 226.46 Y N-HEPTANE

N-HEPTANE 100.201940 C7H16 4.701 205.75 Y N-HEPTANE

N-HEXANE 86.175360 C6H12 5.949 399.3 Y N-HEPTANE

N-OCTANE 114.228520 C8H18 4.892 231.16 Y N-HEPTANE

NITRIC OXIDE 30.006100 NO 3.492 116.7 Y
NITROGEN 28.013400 N2 3.798 71.4 Y
NITROGEN ATOM 14.006700 N 2.66 92.1
NITROGEN DIOXIDE 46.05500 NO2 3.992 204.88 Y
NITROUS OXIDE 44.012800 N2O 3.828 232.4 Y
OXYGEN 31.998800 O2 3.467 106.7 Y
OXYGEN ATOM 15.999400 O 2.66 92.1
PROPANE 44.095620 C3H8 5.118 237.1 Y PROPANE
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Table 12.1: Optional gas and liquid species (continued).

Species Mol. Wt. Formula σ ε/k Liquid RadCal
(g/mol) (Å) (K) Surrogate

PROPYLENE 42.079740 C3H6 4.678 298.9 Y PROPYLENE

SOOT 10.910420 C0.9H0.1 3.798 71.4 SOOT

SULFUR DIOXIDE 64.063800 SO2 4.112 335.4 Y
SULFUR HEXAFLUORIDE 146.055419 SF6 5.128 146.0
TOLUENE 92.138420 C6H5CH3 5.698 480.0 Y TOLUENE

WATER VAPOR 18.015280 H2O 2.641 809.1 Y WATER VAPOR

Option 2: User-Specified Properties

If the gas species is not included in Table 12.1, then you must specify its thermophysical properties. By using
the inputs discussed below, you can also override the default properties for a pre-defined gas species. For a
gas species not included in Table 12.1, its molecular weight, MW, should be specified on the SPEC line in units
of g/mol, otherwise the molecular weight of nitrogen will be used. If the species is participating in a reaction,
then the ENTHALPY_OF_FORMATION in units of kJ/mol must also be specified. Additional discussion on the
enthalpy of formation can be found in Chapter 13. The remaining thermophysical properties of conductivity,
diffusivity, enthalpy, viscosity, absorptivity (thermal radiation), and liquid properties are discussed below.
Most properties can be defined as a constant value or as a temperature dependent look-up table using a RAMP.
For the latter, if the temperature in a gas cell is above or below the endpoints of the RAMP, the endpoint value
will be used. FDS will not extrapolate beyond the ends of the RAMP.

Conductivity

Conductivity can be specified in one of three ways: it can be defined as a constant using CONDUCTIVITY

(W/(m ·K)), it can be defined as a temperature vs. specific heat ramp using RAMP_K, or it can be computed by
FDS using MW, PR_GAS on SPEC (default value is PR on MISC), and the Lennard-Jones potential parameters
σ (SIGMALJ) and ε/k (EPSILONKLJ). If no inputs are specified, FDS will compute the conductivity using
the MW and the Lennard-Jones parameters for nitrogen.

Diffusivity

Diffusivity is assumed to be the binary diffusion coefficient between the given species and the background
species. Diffusivty can be specified in one of three ways: it can be defined as a constant using DIFFUSIVITY
(m2/s), it can be defined as a temperature vs. diffusivity ramp using RAMP_D, or it can be computed by FDS
using MW and the Lennard-Jones potential parameters σ (SIGMALJ) and ε/k (EPSILONKLJ). If no inputs are
specified, FDS will compute the diffusivity using the MW and the Lennard-Jones parameters for nitrogen.

Enthalpy

The enthalpy of the gas mixture is given by the following formula:

h(T ) = h(Tref)+
∫ T

Tref

cp(T ′) dT ′ (12.1)

where cp is the SPECIFIC_HEAT (kJ/(kg ·K)) with optional temperature dependence using RAMP_CP. The
(optional) REFERENCE_TEMPERATURE, Tref (◦C), is the temperature that corresponds to the
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REFERENCE_ENTHALPY, h(Tref) (kJ/kg). The default value of the REFERENCE_TEMPERATURE is 25 ◦C.
If SPECIFIC_HEAT is specified and the REFERENCE_ENTHALPY is not, the REFERENCE_ENTHALPY will
be set to h(Tref) = cpTref.

If no inputs for enthalpy are provided, then the specific heat of the gas will be calculated from its
molecular weight using the relation:

cp,α =
γ

γ−1
R

Wα
(12.2)

The ratio of specific heats, GAMMA, is 1.4 by default and can be changed on the MISC line. If you want all
the gas specific heats to follow this relation, set CONSTANT_SPECIFIC_HEAT_RATIO=.TRUE. on the MISC
line (note: this option also requires STRATIFICATION=.FALSE.). In this case the REFERENCE_ENTHALPY
will be assumed to be 0 kJ/kg at a REFERENCE_TEMPERATURE of 0 K.

The reference enthalpy can also be determined by defining the ENTHALPY_OF_FORMATION on the
SPEC line with a reference temperature for all species given by H_F_REFERENCE_TEMPERATURE on the
MISC line (default is 25 ◦C). Note that ENTHALPY_OF_FORMATION will override any value given for
REFERENCE_ENTHALPY.

Viscosity

The dynamic viscosity of the gas species can be specified in one of three ways: it can be defined as a
constant using VISCOSITY, it can be defined as a temperature vs. viscosity ramp using RAMP_MU, or it
can be computed using the Lennard-Jones potential parameters σ (SIGMALJ) and ε/k (EPSILONKLJ). If no
viscosity inputs are provided, FDS will use the Lennard-Jones values for nitrogen.

Radiative Properties

Species that can absorb and emit thermal radiation are defined via the parameter RADCAL_ID on the SPEC
line. Some of the predefined species have this parameter already defined as shown in Table 12.1. There
are, however, many other species which are absorbing. For absorbing species not listed in Table 12.1,
RADCAL_ID can be used to identify a RadCal [5] species to serve as a surrogate. For example:

&SPEC ID='ETHANOL', RADCAL_ID='METHANOL' /

would use the RadCal absorptivities for METHANOL when computing the absorptivity of ETHANOL. For ab-
sorbing species not present in RadCal, it is recommended to choose a RadCal surrogate with similar molecu-
lar functional groups and molecular mass. The infrared spectrum is greatly affected by the species molecular
functional groups.

Species molecular mass also affects the spectrum: a heavier species of a given molecular functional
group tends to absorb and emit more infrared radiation than a lighter species of the same functional group.
For simple chemistry, if the fuel is not present in Table 12.1 and no FUEL_RADCAL_ID is provided on the
REAC line, then the absorption properties of methane will be used.

Gibbs Energy

If a reverse chemical reaction is specified using REVERSE=.TRUE. on a REAC input, FDS can use the
forward reaction kinetics along with the equilibrium values of the reaction to determine the reverse kinetics.
The equilibrium is determined by minimizing the Gibbs energy. The temperature vs. Gibbs energy (kJ/mol)
for a species can be specified with RAMP_G_F.
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Liquids

If the species listed in Table 12.1 includes liquid properties, it can be applied to liquid droplets, in which
case the following relationship should hold:

hgas(Tboil) = hliquid(Tboil)+hv (12.3)

More detail is included in Chapter 15.

12.1.3 Air

There are two predefined species for air in FDS. The first predefined species is the default background
species of AIR. This is a lumped species consisting of oxygen, nitrogen, carbon dioxide, and water vapor
whose mass fractions are controlled by the Y_CO2_INFTY, Y_O2_INFTY, and HUMIDITY inputs. This
lumped species is automatically defined by FDS if no other SPEC input is defined as the BACKGROUND.
Note that ID=’AIR’ cannot be used on a SPEC input unless that input or some other SPEC input is defined
as the BACKGROUND. The second predefined species is the primitive species of LJ AIR. This is an effective
gas species whose molecular weight and enthalpy are defined based on the Y_CO2_INFTY and Y_O2_INFTY
inputs, and whose other thermophysical properties use the Lennard-Jones parameters for air. For simulations
without combustion, using LJ AIR as the BACKGROUND species will slightly reduce the computational cost.

Specifying a Chemical Formula

If you want FDS to compute the molecular weight of the gas species, you can input a FORMULA rather than
the molecular weight, MW. This will also be used as the label for the gas species by Smokeview. FORMULA is
a character string consisting of elements followed by their atom count. Subgroups bracketed by parentheses
can also be given. The element name is given by its standard, case-sensitive, IUPAC1 abbreviation (e.g., C
for carbon, He for helium). The following are all equivalent:

&SPEC ID='ETHYLENE GLYCOL', FORMULA='C2H6O2'/
&SPEC ID='ETHYLENE GLYCOL', FORMULA='OHC2H4OH'/
&SPEC ID='ETHYLENE GLYCOL', FORMULA='C2H4(OH)2'/

Two Gas Species with the Same Properties

In general only one species for a given ID can be defined; however, you may wish to model multiple inlet
streams of a species and be able to identify how well the streams are mixing. This can be done by defining
a new species with a single component. For example, the lines:

&SPEC ID='CARBON DIOXIDE', LUMPED_COMPONENT_ONLY=.TRUE./
&SPEC ID='CO2 1',SPEC_ID='CARBON DIOXIDE'/
&SPEC ID='CO2 2',SPEC_ID='CARBON DIOXIDE'/
&DEVC XYZ=..., QUANTITY='MASS FRACTION', SPEC_ID='CO2 1', ID='Device 1'/
&DEVC XYZ=..., QUANTITY='MASS FRACTION', SPEC_ID='CO2 2', ID='Device 2'/

define two duplicate species, both of which are CARBON DIOXIDE. Both will use the built in property data
for CO2 (note specifying one or more properties for a duplicate species will override the default properties).
The ID for each duplicate species can then be used in the remainder of the input file. In this exmaple,
the LUMPED_COMPONENT_ONLY was given so that FDS only tracks CO2 1 and CO2 2 and not CARBON
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DIOXIDE. Note that the ID you provide for a duplicate species cannot match the ID of any other primitive
or lumped SPEC input. Also note that this feature can only be used to duplicate a predefined species (i.e. a
species listed in Table 12.1).

In the above example, the two DEVC lines refer to the IDs of the duplicate species. If instead the
primitive species ID was used, then the output would sum the mass fractions over all species containing that
primitive species. For example, if the output quantities in the example above are changed as shown below,
then Device 1 would just output the mass fraction of CO2 1 and Device 2 would output the sum of both.

&DEVC XYZ=..., QUANTITY='MASS FRACTION', SPEC_ID='CO2 1', ID='Device 1'/
&DEVC XYZ=..., QUANTITY='MASS FRACTION', SPEC_ID='CARBON DIOXIDE', ID='Device 2'/

Another application of this would be if you wanted to track the water that evaporated from sprinklers,
separately from the water that resulted from combustion. The following inputs would allow you to do that:

&REAC FUEL='PROPANE', ... /
&SPEC ID='WATER VAPOR SPK', SPEC_ID='WATER VAPOR' /
&PART ID='Sprinkler Droplets',SPEC_ID='WATER VAPOR SPK'/
&DEVC XYZ=..., QUANTITY='MASS FRACTION', SPEC_ID='WATER VAPOR SPK', ID='Spr H2O'/
&DEVC XYZ=..., QUANTITY='MASS FRACTION', SPEC_ID='WATER VAPOR', ID='All H2O'/

The gas species called WATER VAPOR SPK has the same properties as WATER VAPOR. The first device
records only water that results from droplet evaporation, and the second device records water that originates
from both sprinklers and combustion.

By default, duplicate species are considered to be a lumped species and not a primitive species. That is,
by default, a duplicate species cannot be used in a lumped species definition. Setting PRIMITIVE=.TRUE.

will have FDS treat the duplicate species as a primitive species and allow it to be used in a lumped species
definition. Note that when this is done, one can no longer aggregate SPEC_ID based outputs over the
original and the duplicate species as the aggregation is done on the basis of the primitive species names.
This is demonstrated in the example below. The species O2 and O3 are duplicate species of OXYGEN. O3 is
defined as a primitive species and O2 is considered only a lumped species. The initial DEVC outputs in order
would be 0.3 (0.1 for OXYGEN plus 0.2 for O2), 0.2 (the O2 initial value), and 0.3 (the O3 initial value). Note
the OXYGEN output is not 0.6 since the O3 is defined as a new primitive species.

&SPEC ID='NITROGEN',BACKGROUND=.TRUE./
&SPEC ID='OXYGEN',MASS_FRACTION_0=0.1/
&SPEC ID='O2',SPEC_ID='OXYGEN',MASS_FRACTION_0=0.2/
&SPEC ID='O3',SPEC_ID='OXYGEN',MASS_FRACTION_0=0.3,PRIMITIVE=.TRUE./

&DEVC XYZ=0.5,0.5,0.5,QUANTITY='MASS FRACTION',SPEC_ID='OXYGEN'/
&DEVC XYZ=0.5,0.5,0.5,QUANTITY='MASS FRACTION',SPEC_ID='O2'/
&DEVC XYZ=0.5,0.5,0.5,QUANTITY='MASS FRACTION',SPEC_ID='O3'/

12.2 Specifying Lumped Species (Mixtures of Primitive Species)

The SPEC namelist group also allows you to define species mixtures. The purpose of a species mixture is to
reduce the number of species transport equations that are explicitly solved. For example, consider air. Air
is composed of nitrogen, oxygen, water vapor, and carbon dioxide. If we define the four component species
of air, we will have four total species. One of these, say nitrogen, can be set to be the background species,
leaving three transport equations to solve. Alternatively, we can define a “lumped species” that represents
the air mixture and save on CPU time because the three transport equations are no longer needed and the
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“lumped” air becomes the background species.
The following inputs define equivalent initial mixtures. But in the first example three species are ex-

plicitly tracked and in the second example only a background mixture is specified. Note that this example
represents the background species created by FDS when no background is explicitly defined in the input file.
It is also noted that any implicitly defined species (such as the nitrogen, oxygen, water vapor, and carbon
dioxide for the air background species or the species in the lumped product species for simple chemistry,
see 13.1.1), can be referenced by any of the outputs such as DEVC or SLCF.

Example 1: All primitive species

&SPEC ID='NITROGEN', BACKGROUND=.TRUE. / Note: The background must be defined first.
&SPEC ID='OXYGEN', MASS_FRACTION_0=0.23054 /
&SPEC ID='WATER VAPOR', MASS_FRACTION_0=0.00626 /
&SPEC ID='CARBON DIOXIDE', MASS_FRACTION_0=0.00046 /

Example 2: Defining a background species

&SPEC ID='NITROGEN', LUMPED_COMPONENT_ONLY=.TRUE. /
&SPEC ID='OXYGEN', LUMPED_COMPONENT_ONLY=.TRUE. /
&SPEC ID='WATER VAPOR', LUMPED_COMPONENT_ONLY=.TRUE. /
&SPEC ID='CARBON DIOXIDE', LUMPED_COMPONENT_ONLY=.TRUE. /

&SPEC ID='AIR', BACKGROUND=.TRUE.,
SPEC_ID(1)='NITROGEN', MASS_FRACTION(1)=0.76274,
SPEC_ID(2)='OXYGEN', MASS_FRACTION(2)=0.23054,
SPEC_ID(3)='WATER VAPOR', MASS_FRACTION(3)=0.00626,
SPEC_ID(4)='CARBON DIOXIDE', MASS_FRACTION(4)=0.00046 /

The logical parameter LUMPED_COMPONENT_ONLY indicates that the species is only present as part of a
lumped species. When .TRUE., FDS will not allocate space to track that species individually. The parame-
ters to define a lumped species are:
BACKGROUND Denotes that this lumped species is to be used as the background species.

ID Character string identifying the name of the species. You must provide this. This cannot be the same as
an ID of another SPEC input.

SPEC_ID Character array containing the names of the primitive species that make up the lumped species.

MASS_FRACTION The mass fractions of the components of the lumped species in the order listed by
SPEC_ID. FDS will normalize the values to 1. Alternatively, VOLUME_FRACTION can be specified.
Do not use both on an SPEC line.

MASS_FRACTION_0 The initial mass fractions of lumped species.

When defining a lumped species, either MASS_FRACTION or VOLUME_FRACTION must be used to define
the component species. The addition of lumped species to FDS has changed the meaning of SPEC_ID on
some FDS inputs. For INIT, MATL, PART, and SURF, SPEC_ID refers to either a tracked primitive species
or a lumped species. For outputs and devices, DEVC, that require a SPEC_ID, the SPEC_ID input can refer
to either a tracked primitive species, a lumped species, or a lumped species component that is not tracked.
For REAC see the discussion on specifying reactions in Chapter 13.
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12.2.1 Combining Lumped and Primitive Species

There are cases where you may wish to have a single primitive species be both part of a lumped species
and also a separately tracked species. For example, when using simple chemistry, Section 13.1.1, FDS will
include water vapor in the product species and in the air background species. If you also wish to have
sprinklers in the simulation, then you will need to track water vapor from the sprinklers separately from that
in the air or products. This is simply done by adding the line:

&SPEC ID='WATER VAPOR'/

This will override the implicitly created water vapor species defined with LUMPED_COMPONENT_ONLY=.TRUE.
and cause FDS to track water vapor as a separate species. Note that in this case if you requested an output
for the mass fraction of WATER VAPOR you would get the water vapor in the air and product lumped species
as well as that which evaporated from sprinkler droplets. If you wanted in this case (where water vapor
is implicitly defined), to be able to track the water vapor from sprinklers separately you could follow the
example in Section 12.1.3 and define:

&SPEC ID='SPRINKLER WATER VAPOR',SPEC_ID='WATER VAPOR'/

Using the species SPRINKLER WATER VAPOR for the sprinklers would allow you to track sprinkler gener-
ated water vapor separately.
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Chapter 13

Combustion

A common source of confusion in FDS is the distinction between gas phase combustion and solid phase
pyrolysis. The former refers to the reaction of fuel vapor and oxygen; the latter the generation of fuel vapor
at a solid or liquid surface. Whereas there can be many types of combustibles in an FDS fire simulation, in
the simple chemistry, mixing-controlled combustion model there can only be one gaseous fuel. The reason
is cost. It is expensive to solve transport equations for multiple gaseous fuels. Consequently, the burning
rates of solids and liquids are automatically adjusted by FDS to account for the difference in the heats of
combustion of the various combustibles. In effect, you specify a single gas phase reaction as a surrogate for
all potential fuels.

Combustion can be modeled in two ways. By default, the reaction of fuel and oxygen is infinitely
fast and controlled only by mixing, hence the label mixing-controlled. The alternative is that the reaction
is finite-rate. The latter approach usually requires very fine grid resolution that is not practical for large-
scale fire applications. This chapter describes both methods, with an emphasis on the more commonly used
mixing-controlled model. The REAC namelist group contains the parameters for both modes of combustion.

13.1 Single-Step, Mixing-Controlled Combustion

This approach to combustion, referred to below as the “simple chemistry” combustion model, considers a
single fuel species that is composed primarily of C, H, O, and N that reacts with oxygen in one mixing-
controlled step to form H2O, CO2, soot, and CO. Information about the reaction is provided on the REAC

line. Starting with FDS 6, you must specify a REAC line to model a fire. You are responsible for defining the
basic fuel chemistry and the post-combustion yields of CO and soot. The default values are 0.

13.1.1 Simple Chemistry Parameters

For the simple chemistry model, each reaction is assumed to be of the form:

CxHyOzNv +νO2 O2→ νCO2 CO2 +νH2O H2O+νCO CO+νS Soot+νN2 N2 (13.1)

You need only specify the chemical formula of the fuel along with the yields of CO and soot, and the
volume fraction of hydrogen in the soot, XH. FDS will use that information and calculate the stoichiometric
coefficients automatically as follows:

νO2 = νCO2 +
νCO

2
+

νH2O

2
− z

2
νCO2 = x−νCO− (1−XH)νS
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νH2O =
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2
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2
νS

νCO =
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WCO

yCO

νs =
WF

WS
yS

νN2 =
v
2

Ws = XH WH +(1−XH)WC

The following parameters may be prescribed on the REAC line when using the simple chemistry model. Note
that the various YIELDs are for well-ventilated, post-flame conditions. There are options to predict various
species yields in under-ventilated fire scenarios, but these special models still require the post-flame yields
for CO, soot and any other species listed below.

FUEL (Required) A character string that identifies fuel species for the reaction. When using simple chem-
istry, specifying FUEL will cause FDS to use the built-in thermophysical properties for that species
when computing quantities such as specific heat or viscosity. Table 12.1 provides a listing of the avail-
able species. If the FUEL is in the table, then FDS will use the built-in formula to obtain the values of
C, H, O, and N. If not listed in Table 12.1, FDS uses the gas thermophysical properties of ETHYLENE
along with the molecular weight given by the FORLMULA or the values of C, H, O, and N. Either way,
FDS will implicitly create a SPEC input for FUEL. This allows FUEL to be used as a SPEC_ID input
elsewhere (for example as an initial condition or an output quantity). If you define FUEL yourself as a
SPEC, any properties you specify will override the default values.

FORMULA A character string that identities the chemical formula of the fuel species for the reaction. This
input only has meaning when simple chemistry is being used and the formula can only contain C, H, O,
or N. Specifying a formula means the individual inputs of C, H, O, and N do not need to be specified.
See 12.1.2 for a description on how to input a FORMULA.

ID A character string that identifies the reaction. Normally, this label is not used by FDS, but it is useful to
label the REAC line if more than one reactions are specified.

C, H, O, N The fuel chemical formula. All numbers are positive. One of either C or H must be specified.
This input is not needed if FORMULA is specified or if the FUEL is in Table 12.1.

CO_YIELD The fraction of fuel mass converted into carbon monoxide, yCO. Note that this parameter is only
appropriate when the simple chemistry model is applied. (Default 0.)

SOOT_YIELD The fraction of fuel mass converted into smoke particulate, ys. Note that this parameter is
only appropriate when the simple chemistry model is applied. (Default 0.)

SOOT_H_FRACTION The fraction of the atoms in the soot that are hydrogen. The default value is 0.1, equiv-
alent to the input FORMULA=’C0.9H0.1’ (Section 12.1.3). Note that this parameter is only appropriate
when the simple chemistry model is applied.

FUEL_RADCAL_ID RadCal species to be used for the fuel. The default is the default RadCal species for the
fuel species or ’METHANE’ if there is no species default. See Section 14.2.1 for details.

The ambient mass fractions for the constituents of air are specified on MISC using the inputs:

Y_O2_INFTY Ambient mass fraction of oxygen (Default 0.232378)
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Y_CO2_INFTY Ambient mass fraction of carbon dioxide (Default 0.000595)

HUMIDITY Relative humidity of the background air species, in units of %. (Default 40 %).

A few sample REAC lines are given here.

&REAC FUEL = 'METHANE' /

In this case, there is no need for a FORMULA or atom count because the FUEL is listed in Table 12.1. It is
assumed that the soot and CO yields are zero. FDS will compute the yields of product species and the heat
of combustion based upon predefined values.

&REAC FUEL = 'PROPANE'
SOOT_YIELD = 0.01
CO_YIELD = 0.02
HEAT_OF_COMBUSTION = 46460. /

In this case, the fuel species is again predefined. However, here the heat of combustion is specified explicitly
rather than calculated. Additionally, minor species yields have been specified with the soot yield specified
as 0.01 and the CO yield specified as 0.02. See Section 13.1.2 for more details on the heat of combustion.

&REAC FUEL = 'MY FUEL'
FORMULA = 'C3H8O3N4'
HEAT_OF_COMBUSTION = 46124. /

In this case, the fuel is not predefined. Therefore, either the FORMULA or the atom counts must be defined.
This input defined the FORMULA. In this case, the heat of combustion is known and specified; however, if it
weren’t FDS would compute it using EPUMO2 and the fuel chemistry. Note that simple chemistry can also
be used for cases where the fuel is a lumped species so long as the defining primitive species contain only
C, H, N, and O atoms. An example can be found in Section 13.2.1.

When simple chemistry is being used, FDS will automatically create three lumped species: AIR, FUEL,
and PRODUCTS. The actual name of the fuel species will be the name given on the REAC line (for example
MY FUEL in the last sample above). FDS creates these lumped species in the same manner as you would in
an input file. FDS first defines the primitive species and then defines the lumped species. In essence FDS
internally creates input lines like those shown in Example 2 of Section 12.2. This means when doing simple
chemistry, that even though you did not explicitly define oxygen in the input file, you can request an output
for oxygen since it was implicitly defined by FDS.

13.1.2 Heat of Combustion

The energy release per unit volume (kJ/m3) from a gas phase chemical reaction (or system of reactions)
is found by taking the sum of the net change in mass for each species in a given time step multiplied by
the respective species’ enthalpy of formation (kJ/kg). In this formulation, the enthalpy of formation for all
participating species needs to be specified. If a reaction (simple chemistry or user-defined) contains only
species defined in Table 12.1, then all of the enthalpies of formation are known. These values can be found
in the FDS source code in data.f90. For reactions with species that are not included in Table 12.1, there are
several options to ensure that all of the enthalpies of formation are specified.

Option 1: Specify Enthalpy of Formation

You can specify unknown enthalpies on the SPEC line in units of kJ/mol:
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&SPEC ID = 'GLUCOSE', FORMULA = 'C62H12O6', ENTHALPY_OF_FORMATION=-1.297E3 /

Option 2: Specify Heat of Combustion

For a given reaction, if the only species missing an enthalpy of formation is the fuel, the missing value can
be found if the heat of combustion is specified on REAC. Section 13.2.1 provides an example for which the
fuel, polyvinyl chloride, has an unspecified enthalpy of formation but a specified heat of combustion on the
REAC line.

Option 3: Use of EPUMO2 (Simple Chemistry)

If the enthalpy of formation of the fuel and heat of combustion are not specified, for simple chemistry cases
only, the heat of combustion is assumed to be

∆h≈ νO2 WO2

νFWF
EPUMO2 kJ/kg (13.2)

The quantity EPUMO2 (kJ/kg) is the amount of energy released per unit mass of oxygen consumed. Its default
is 13,100 kJ/kg. Typically, a chemical reaction is balanced by setting the stoichiometric coefficient of the fuel
νF to 1. In FDS, the stoichiometric coefficients of the chemical reaction are normalized by the stoichiometric
coefficient of the fuel, effectively setting νF to 1. Note that if both EPUMO2 and HEAT_OF_COMBUSTION are
specified that FDS will ignore the value for EPUMO2. From the HEAT_OF_COMBUSTION, FDS solves for the
enthalpy of formation of the fuel.

If heats of reaction have been specified on the MATL lines and the heats of combustion of the materials
differ from that specified by the governing gas phase reaction, then add a HEAT_OF_COMBUSTION (kJ/kg)
to the MATL line. With the simple chemistry combustion model, it is assumed that there is only one fuel.
However, in a realistic fire scenario, there may be many fuel gases generated by the various burning objects
in the building. Specify the stoichiometry of the predominant reaction via the REAC namelist group. If the
stoichiometry of the burning material differs from the global reaction, the HEAT_OF_COMBUSTION is used
to ensure that an equivalent amount of fuel is injected into the flow domain from the burning object.

The heat of combustion can be determined in a couple of ways. One approach is to take the difference in
the heats of formation for the products (assuming complete combustion) and the reactants. This is typically
how values are tabulated for pure fuels (e.g., one species) in handbooks. This ideal heat of combustion does
not account for the SOOT_YIELD or CO_YIELD that occurs in a real fire. Carbon and hydrogen that go to soot
and CO rather than CO2 and H2O result in a lower effective heat of combustion. Setting IDEAL=.TRUE.

will reduce the HEAT_OF_COMBUSTION based upon the inputs for SOOT_YIELD and CO_YIELD. If EPUMO2
is specified instead of HEAT_OF_COMBUSTION, then the EPUMO2 will not be changed.

The second approach to determining the heat of combustion is to burn a known mass of the material
in a calorimeter and divide the heat release rate by the mass loss rate (known as the effective heat of com-
bustion). In this approach, represented by IDEAL=.FALSE., the measured value of the heat release rate
includes the effects of any CO or soot that is produced and no adjustment is needed. The default value is
IDEAL=.FALSE.

Note: If you specify a heat of combustion on the REAC line, FDS will calculate the enthalpy of formation
of the fuel such that the user-specified heat of combustion is maintained. This is important to recognize for
cases where a heat of combustion is measured experimentally or if you want to model impurities in the fuel
that would not be realized using the standard heat of formation of the fuel.

If the reaction is under defined, FDS will return an error at the start of the calculation.
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13.1.3 Special Topic: Turbulent Combustion

Unless you are performing a Direct Numerical Simulation (DNS), the reaction rate of fuel and oxygen is
not based on the diffusion of fuel and oxygen at a well-resolved flame sheet. Instead, semi-empirical rules
are invoked by FDS to determine the rate of mixing of fuel and oxygen within a given mesh cell at a given
time step. Each computational cell can be thought of as a batch reactor where only the mixed composition
can react. The variable, ζ (t), denotes the unmixed fraction, ranging from zero to one and governed by the
equation:

dζ
dt

=
−ζ
τmix

(13.3)

Here, τmix is the mixing time scale. The change in mass of a species is found from the combination of
mixing and the production/destruction rate found from the chemical reaction. If a cell is initially unmixed,
ζ0 = 1 by default, then combustion is considered non-premixed within the grid cell. In this case, the fuel and
air are considered completely separate at the start of the time step and must mix together before they burn.
This means if the mixing is slow enough, that unburned fuel may exist at the end of the time step even if
sufficient oxygen is present in the grid cell to burn all the fuel. If the cell is initially fully mixed, ζ0 = 0, then
the combustion is considered premixed (e.g., equivalent to infinitely fast mixing). You can set the amount of
mixing in each cell at the beginning of every time step using the parameter INITIAL_UNMIXED_FRACTION
on the MISC line.

Note that the MIXTURE FRACTION output quantity applies the Burke-Schumann solution (see [26]) to
map species composition to mixture fraction (i.e., mixture fraction is not a primitive flow variable but rather
is calculated from the local fuel and product mass fractions). This requires simple chemistry with a reaction
of the type F+A→ P with infinitely fast mixing and infinitely fast chemistry. Therefore, you must set
INITIAL_UNMIXED_FRACTION=0 to output MIXTURE FRACTION.

The Technical Reference Guide [1] contains more detailed information about the turbulent combustion
model.

13.1.4 Special Topic: Flame Extinction

Modeling suppression of a fire due to the introduction of a suppression agent like CO2 or water mist, or due
to the exhaustion of oxygen within a compartment is challenging because the relevant physical mechanisms
occur at length scales smaller than a single mesh cell. Flames are extinguished due to lowered temperatures
and dilution of the oxygen supply. A simple suppression algorithm has been implemented in FDS that
attempts to gauge whether or not combustion is viable based on the local energy release. There must be
sufficient energy released to raise the cell temperature above the critical flame temperature for combustion
to occur. The Technical Reference Guide [1] contains more details about how the mechanism works.

The only parameter you can control is the CRITICAL_FLAME_TEMPERATURE (CFT) (the adiabatic
flame temperature at the lower flammability limit) set on the REAC line. The default value is 1327 °C. This
value represents combustion of typical hydrocarbon fuels. Note that if you are using an effective heat of
combustion or other types of fuels, the CFT should be calculated (see below) to reflect your reaction system.
To eliminate any gas phase suppression, set SUPPRESSION=.FALSE. on the MISC line.

If the mixing-controlled combustion model is used and flame extinction occurs, the unburned fuel gas
can re-ignite if it mixes with sufficient oxygen somewhere else in the domain. To prevent this from hap-
pening, you can set the AUTO_IGNITION_TEMPERATURE (AIT), in °C, below which combustion will not
occur. Note that if this parameter is used, then some form of heat/ignition source must be present in order
for combustion to begin.
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Finding or Calculating Extinction Parameters For most fuels of interest, the AIT and CFT may be
found in [27]. The AITs are tabulated for a range of fuels in Table 2-7.1 of the SFPE Handbook [28], “Sum-
mary of Limits of Flammability, Lower Temperature Limits (TL), and Minimum Autoignition Temperatures
(AIT) of Individual Gases and Vapors in Air at Atmospheric Pressure.” Similarly, Table 2-7.3, “Thermo-
dynamic Equilibrium Properties at Extinction,” provides CFT (listed as T(LFL), for temperature at lower
flammability limit) for several common fuels.

If the lower flammability limit (LFL) of the fuel mixture is known but the CFT is not, then Beyler’s
Eq. (4) may be used to estimate the CFT. The formula is repeated here for convenience:

TCFT = T0 +

(
LFL
100

)
∆Hc

nCp
(13.4)

where

∆Hc = Heat of combustion of the fuel (J/kg)

LFL/100 = Mole fraction of fuel

n = Number of moles of products of combustion per mole of fuel/air mixture

Cp = Heat capacity of products of combustion (J/(kg ·K))

T0 = Initial temperature of the fuel/air mixture (ambient conditions) (K)

TCFT = Adiabatic flame temperature of a lower flammability limit mixture (K)
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13.2 Complex Stoichiometry

The “simple chemistry” parameters described above can only be used when there is a single mixing-
controlled reaction and the fuel molecule contains only C, O, H, and N. For any other situation, you must
specify the reaction stoichiometry in greater detail. This means that you must explicitly specify the gas
species, or species mixtures, along with the stoichiometry of the reaction. The easiest way to explain this is
by way of example. Consider a single reaction involving methane. When you specify the REAC line to be:

&REAC FUEL='METHANE' /

FDS assumes the following reaction:

1 (CH4)︸ ︷︷ ︸
Fuel

+ 9.636 (0.2076 O2 +0.7825 N2 +0.0095 H2O+0.0004 CO2)︸ ︷︷ ︸
Air

−→

10.636 (0.0944 CO2 +0.1966 H2O+0.7090 N2)︸ ︷︷ ︸
Products

(13.5)

By default, there are trace amounts of carbon dioxide and water vapor in the air, which, like the nitrogen, is
carried along in the reaction. This is important, because the more complicated way to specify a single step
reaction of methane is as follows:

&SPEC ID='NITROGEN', LUMPED_COMPONENT_ONLY=.TRUE. /
&SPEC ID='OXYGEN', LUMPED_COMPONENT_ONLY=.TRUE. /
&SPEC ID='WATER VAPOR', LUMPED_COMPONENT_ONLY=.TRUE. /
&SPEC ID='CARBON DIOXIDE', LUMPED_COMPONENT_ONLY=.TRUE. /
&SPEC ID='METHANE' /

&SPEC ID='AIR', BACKGROUND=.TRUE.,
SPEC_ID(1)='OXYGEN', VOLUME_FRACTION(1)=0.2076,
SPEC_ID(2)='NITROGEN', VOLUME_FRACTION(2)=0.7825,
SPEC_ID(3)='WATER VAPOR', VOLUME_FRACTION(3)=0.0095,
SPEC_ID(4)='CARBON DIOXIDE', VOLUME_FRACTION(4)=0.0004 /

&SPEC ID='PRODUCTS',
SPEC_ID(1)='CARBON DIOXIDE', VOLUME_FRACTION(1)=0.0944,
SPEC_ID(2)='WATER VAPOR', VOLUME_FRACTION(2)=0.1966,
SPEC_ID(3)='NITROGEN', VOLUME_FRACTION(3)=0.7090 /

&REAC FUEL='METHANE', SPEC_ID_NU='METHANE','AIR','PRODUCTS',
NU=-1,-9.636,10.636, HEAT_OF_COMBUSTION=50000. /

The reaction stoichiometry is specified using the stoichiometric coefficients, NU(N), corresponding to the
tracked1 species, SPEC_ID_NU(N). There are several parameters on the REAC line that control the specifi-
cation of the stoichiometry:

CHECK_ATOM_BALANCE If chemical formulas are provided for all species that participate in a reaction, then
FDS will check the stoichiometry to ensure that atoms are conserved. Setting this flag to .FALSE. will
bypass this check. (Default .TRUE.)

REAC_ATOM_ERROR Error tolerance in units of atoms for the reaction stoichiometry check. (Default 0.00001)

REAC_MASS_ERROR Relative error tolerance computed as (mass of products - mass of reactants)/(mass of
products) for the reaction stoichiometry mass balance check. (Default 0.0001)

1A “tracked” species is one for which LUMPED_COMPONENT_ONLY is .FALSE.
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13.2.1 Complex Fuel Molecules

For complex fuel molecules that contain only C, H, N, and O the simple chemistry reaction parameters
can still be applied. Consider natural gas, which is often a mixture of several component gases. To build
the fuel mixture, the primitive (component) species need be defined. Each primitive species will get a
LUMPED_COMPONENT_ONLY designation, which means that each of these species will not be explicitly
tracked as they are components to a mixture. Note that these lumped components can only contain C, H, N,
and O atoms. The lumped fuel, ’natural gas’, can be created using the defined primitive components
and subsequently the reaction can be defined using simple chemistry (Section 13.1.1):

&SPEC ID='METHANE', LUMPED_COMPONENT_ONLY=.TRUE./
&SPEC ID='ETHYLENE', LUMPED_COMPONENT_ONLY=.TRUE./
&SPEC ID='NITROGEN', LUMPED_COMPONENT_ONLY=.TRUE./
&SPEC ID='CARBON DIOXIDE',LUMPED_COMPONENT_ONLY=.TRUE./

&SPEC ID='natural gas'
SPEC_ID(1)='METHANE', VOLUME_FRACTION(1)=92.2
SPEC_ID(2)='ETHYLENE', VOLUME_FRACTION(2)= 3.3
SPEC_ID(3)='NITROGEN', VOLUME_FRACTION(3)= 3.9
SPEC_ID(4)='CARBON DIOXIDE',VOLUME_FRACTION(4)= 0.6/

&REAC FUEL='natural gas'
SOOT_YIELD=0.01 /

Fires, however, often involve fuels that do not just consist of C, H, N, and O. For example, chlorine is
commonly found in building and household materials, and because of its propensity to form the acid gas
HCl, you may want to account for it in the basic reaction scheme. Suppose the predominant fuel in the fire
is polyvinyl chloride (PVC). Regardless of its detailed polymeric structure, it can be regarded as C2H3Cl
for the purpose of modeling. Assuming that all of the Cl in the fuel is converted into HCl, you can derive a
single-step reaction mechanism using appropriate soot and CO yields for the specified fuel. In this example,
the SFPE Handbook [29] is used to find soot and CO yields for PVC; 0.172 and 0.063, respectively. For a
given species, α , its stoichiometric coefficient, να , can be found from its yield, yα , and its molecular weight,
Wα , according to the formula:

να =
WF

Wα
yα (13.6)

Since it is assumed that all of the Cl is converted to HCL, the remainder of the stoichiometric coefficients
come from an atom balance. An equation can now be written to include the appropriate numerical values
for the stoichiometric coefficients.

1 (C2H3Cl)︸ ︷︷ ︸
Fuel

+1 (1.53 O2 +1.53 (3.76) N2)︸ ︷︷ ︸
Air

−→

1 (HCl+H2O+0.14 CO+0.96 CO2 +0.90 C+1.53 (3.76)N2)︸ ︷︷ ︸
Products

(13.7)

The choice of fuel in this example, PVC, is not defined in Table 12.1, therefore its properties must be defined
on a SPEC line. In this example, we use the species’ chemical formula. The example will also use the lumped
species formulation to minimize the number of scalar transport equations that need to be solved. Therefore,
each species that does not have an explicit transport equation is a LUMPED_COMPONENT_ONLY.

&SPEC ID = 'PVC', FORMULA = 'C2H3Cl' /
&SPEC ID = 'OXYGEN', LUMPED_COMPONENT_ONLY = .TRUE. /
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&SPEC ID = 'NITROGEN', LUMPED_COMPONENT_ONLY = .TRUE. /
&SPEC ID = 'HYDROGEN CHLORIDE', LUMPED_COMPONENT_ONLY = .TRUE. /
&SPEC ID = 'WATER VAPOR', LUMPED_COMPONENT_ONLY = .TRUE. /
&SPEC ID = 'CARBON MONOXIDE', LUMPED_COMPONENT_ONLY = .TRUE. /
&SPEC ID = 'CARBON DIOXIDE', LUMPED_COMPONENT_ONLY = .TRUE. /
&SPEC ID = 'SOOT',FORMULA='C', LUMPED_COMPONENT_ONLY = .TRUE. /

For the oxidizer and products, which are both composed of multiple primitive species, SPEC lines are needed
to define the composition of the lumped species. You can define the SPEC using either the MASS_FRACTIONS
of the component gases or the VOLUME_FRACTIONS. If Eq. (13.7) is properly balanced, you can directly use
the stoichiometric coefficients of the primitive species to define the lumped species.

&SPEC ID='AIR', BACKGROUND=.TRUE.
SPEC_ID(1)='OXYGEN', VOLUME_FRACTION(1)=1.53,
SPEC_ID(2)='NITROGEN', VOLUME_FRACTION(2)=5.76 /

&SPEC ID='PRODUCTS',
SPEC_ID(1)='HYDROGEN CHLORIDE', VOLUME_FRACTION(1)=1.0,
SPEC_ID(2)='WATER VAPOR', VOLUME_FRACTION(2)=1.0,
SPEC_ID(3)='CARBON MONOXIDE', VOLUME_FRACTION(3)=0.14,
SPEC_ID(4)='CARBON DIOXIDE', VOLUME_FRACTION(4)=0.96,
SPEC_ID(5)='SOOT', VOLUME_FRACTION(5)=0.90,
SPEC_ID(6)='NITROGEN', VOLUME_FRACTION(6)=5.76 /

To set the initial concentration of fuel, an INIT line is used:

&INIT MASS_FRACTION(1)=0.229, SPEC_ID(1)='PVC' /

Since this is not a simple chemistry problem, either the enthalpy of formation of PVC or the heat of com-
bustion of the reaction should be specified. In this case, the heat of combustion for PVC is taken from the
SFPE Handbook [29].

&REAC FUEL='PVC', HEAT_OF_COMBUSTION=16400, SPEC_ID_NU='PVC','AIR','PRODUCTS',
NU=-1,-1,1, FIXED_MIX_TIME=0.1 /

Note that the sign of NU corresponds to whether that species is consumed (-) or produced (+). Figure 13.1
displays the mass fractions of the product species for the sample case PVC_Combustion. A fixed turbulent
mixing time of 0.1 s is used for this example only because the reactants are initially mixed within a chamber
with no imposed flow. Normally, this parameter is not necessary.

13.2.2 Multiple Chemical Reactions

There may be times when the your design/model fire is best described by more than one fuel or by more than
a single-step chemical reaction. For this example consider two simultaneous, mixing-controlled reactions of
polyurethane and wood. Both of these fuels are complex molecules not included in Table 12.1, so they must
be defined on the SPEC line. Polyurethane is defined by the chemical formula C25H42O6N2 and wood
is defined by CH1.7O0.74N0.002. Consider a combustion reaction for polyurethane with a soot yield of ys =
0.131 and a CO yield of yCO= 0.01 [29] is:

1 (C25H42O6N2)︸ ︷︷ ︸
Fuel

+27.23436 (O2 +3.76 N2)︸ ︷︷ ︸
Air

−→
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Figure 13.1: Product species mass fractions for model PVC example.

1 (19.79113 CO2 +0.166587 CO+20.71987 H2O+5.60253 C0.9H0.1 +103.40121 N2)︸ ︷︷ ︸
Products_1

(13.8)

and the reaction for wood with a soot yield of ys = 0.015 and a CO yield of yCO= 0.004 [29] is:

1 (CH1.7O0.74N0.002)︸ ︷︷ ︸
Fuel

+1.02121 (O2 +3.76 N2)︸ ︷︷ ︸
Air

−→

1 (0.964679 CO2 +0.003655 CO+0.848241 H2O+0.035184 C0.9H0.1 +3.838558 N2)︸ ︷︷ ︸
Products_2

(13.9)

Similar to example in Section 13.2.1, we will use the lumped species approach to minimize the number of
species that FDS needs to transport. Therefore, the species are defined in the following manner:

&SPEC ID = 'POLYURETHANE', FORMULA = 'C25H42O6N2' /
&SPEC ID = 'WOOD', FORMULA = 'CH1.7O0.74N0.002' /
&SPEC ID = 'OXYGEN', LUMPED_COMPONENT_ONLY = .TRUE. /
&SPEC ID = 'NITROGEN', LUMPED_COMPONENT_ONLY = .TRUE. /
&SPEC ID = 'WATER VAPOR', LUMPED_COMPONENT_ONLY = .TRUE. /
&SPEC ID = 'CARBON MONOXIDE', LUMPED_COMPONENT_ONLY = .TRUE. /
&SPEC ID = 'CARBON DIOXIDE', LUMPED_COMPONENT_ONLY = .TRUE. /
&SPEC ID = 'SOOT', LUMPED_COMPONENT_ONLY = .TRUE. /

Examination of Eq. (13.8) and Eq. (13.9) shows that, while Products_1 and Products_2 are composed of the
same species, the species do not exist in the same proportion. As a result, we must construct two separate
product lumped species.

&SPEC ID = 'AIR',
SPEC_ID(1) = 'OXYGEN', VOLUME_FRACTION(1)=1,
SPEC_ID(2) = 'NITROGEN', VOLUME_FRACTION(2)=3.76,
BACKGROUND=.TRUE. /

&SPEC ID = 'PRODUCTS_1',
SPEC_ID(1) = 'CARBON DIOXIDE', VOLUME_FRACTION(1) = 19.79113,
SPEC_ID(2) = 'CARBON MONOXIDE', VOLUME_FRACTION(2) = 0.166587,
SPEC_ID(3) = 'WATER VAPOR', VOLUME_FRACTION(3) = 20.71987,
SPEC_ID(4) = 'SOOT', VOLUME_FRACTION(4) = 5.60253,
SPEC_ID(5) = 'NITROGEN', VOLUME_FRACTION(5) = 103.40121 /
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&SPEC ID = 'PRODUCTS_2',
SPEC_ID(1) = 'CARBON DIOXIDE', VOLUME_FRACTION(1) = 0.964679,
SPEC_ID(2) = 'CARBON MONOXIDE', VOLUME_FRACTION(2) = 0.003655,
SPEC_ID(3) = 'WATER VAPOR', VOLUME_FRACTION(3) = 0.848241,
SPEC_ID(4) = 'SOOT', VOLUME_FRACTION(4) = 0.035184,
SPEC_ID(5) = 'NITROGEN', VOLUME_FRACTION(5) = 3.838558 /

Once we have constructed the lumped species, we can define the REAC lines.

&REAC ID = 'plastic',
FUEL = 'POLYURETHANE',
HEAT_OF_COMBUSTION=26200,
SPEC_ID_NU = 'POLYURETHANE','AIR','PRODUCTS_1'
NU=-1,-27.23436,1 /

&REAC ID = 'wood'
FUEL = 'WOOD',
HEAT_OF_COMBUSTION=16400,
SPEC_ID_NU = 'WOOD','AIR','PRODUCTS_2'
NU=-1,-1.02063,1 /

In both of these reactions, the ENTHALPY_OF_FORMATION of the chosen fuels is unknown to FDS, so the
HEAT_OF_COMBUSTION is specified for each reaction. Typically, the heat release per unit area (HRRPUA)
parameter is used to specify the fire size on the SURF line. The HRRPUA parameter cannot currently be used
when there is more than one fuel, so the mass flux of fuel must be specified for each fuel. In this example,
we want both fuels to flow out of the same burner and ramp up to a 1200 kW fire after 60 s. First, we create
a 1 m2 burner by defining a VENT line:

&VENT XB=4.0,5.0,4.0,5.0,0.0,0.0, SURF_ID='FIRE1', COLOR='RED'/

The VENT points to the SURF_ID=’FIRE1’ which we can define using both fuels. The mass flux values for
each fuel are determined by the desired heat release, the proportion of the total heat release rate each fuel
contributes, the burner area, and the heat of combustion of each fuel. In this case we want a 1200 kW fire
where each fuel contributes 50% to the total heat release rate (600 kW).

ṁ′′poly =
600 kW

1 m2
1

26200 kJ/kg
= 0.022901 kg/(m2 · s) (13.10)

ṁ′′wood =
600 kW

1 m2
1

16400 kJ/kg
= 0.036585 kg/(m2 · s) (13.11)

&SURF ID='FIRE1', SPEC_ID(1)='POLYURETHANE', MASS_FLUX(1)=0.022901, RAMP_MF(1)='poly'
SPEC_ID(2)='WOOD', MASS_FLUX(2)=0.036585, RAMP_MF(2)='wood'/

Note that the SPEC_ID, MASS_FLUX, and RAMP_MF correspond to one another for each fuel. It does not
matter which fuel is (1), just that the numbering is consistent. We also want each fuel to follow a ramp
such that fire starts at 0 kW at the initial time, reaches 1200 kW at 100 s, and remains at 1200 kW for the
remainder of a 600 s simulation.

&RAMP ID='poly', T = 0, F = 0.0 /
&RAMP ID='poly', T = 50 , F = 0.5 /
&RAMP ID='poly', T = 100, F = 1.0 /
&RAMP ID='poly', T = 600, F = 1.0 /
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&RAMP ID='wood', T = 0 , F = 0.0 /
&RAMP ID='wood', T = 50 , F = 0.5 /
&RAMP ID='wood', T = 100, F = 1.0 /
&RAMP ID='wood', T = 600, F = 1.0 /

Here, T corresponds to the time and F is the fraction of the mass flux specified on the SURF line. Fig. 13.2
compares the resulting FDS heat release rate (HRR) to the expected HRR from the defined ramp. Note that
in this simulation, there is 10 s averaging on the FDS output HRR (&DUMP DT_HRR=10) and the expected
results account for this averaging.
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Figure 13.2: HRR for energy_budget_adiabatic_two_fuels test case.

Note that when using multiple chemical reactions, you must set SUPPRESSION=.FALSE. on the MISC
line.

13.2.3 Special Topic: Using the EQUATION input parameter

When specifying a reaction scheme using all primitive variables (i.e., no lumped species), a convenient
shortcut for specifying the reaction is via the input parameter EQUATION, which allows the specification of
the reaction in text form. The rules are:

• The species must be explicitly tracked.

• The species name is its chemical formula as defined on the SPEC line or by the species ID.

• The stoichiometry is given before each species and is separated by an asterisk. Real numbers are allowed
but exponential notation is not (i.e., 201.1 but not 2.011E2).

• The reactants and products are separated by an equals sign.

For example, if the reaction defines the complete combustion of methane using primitive species, then the
following would be equivalent:

&REAC FUEL='METHANE', EQUATION ='METHANE+2*OXYGEN=CARBON DIOXIDE+2*WATER VAPOR' /
&REAC FUEL='METHANE', EQUATION ='CH4+2*O2=CO2+2*H2O' /
&REAC FUEL='METHANE', EQUATION ='METHANE+2*O2=CO2+2*H2O' /
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13.3 Finite Rate Combustion

By default, FDS uses a mixing-controlled combustion model, meaning that the reaction rate is infinite and
limited only by species concentrations. However, FDS can also employ finite-rate reactions using an Ar-
rhenius model. It is recommended that finite-rate reactions be invoked only when FDS is running in DNS
mode (DNS=.TRUE. on the MISC line). You can use the finite-rate reaction model in an LES calculation,
but because the temperature in a large scale calculation is smeared out over a mesh cell, some of the reaction
parameters may need to be modified to account for the lower cell-averaged temperatures.

Consider a single-step reaction mechanism for complete propane combustion:

C3H8 +5O2→ 3CO2 +4H2O (13.12)

In this case we explicitly define all primitive species:

&SPEC ID='NITROGEN', BACKGROUND=.TRUE./
&SPEC ID='PROPANE' /
&SPEC ID='OXYGEN' /
&SPEC ID='WATER VAPOR' /
&SPEC ID='CARBON DIOXIDE' /

The rate expression for the fuel, C3H8, is

dCC3H8

dt
=−k ∏Cα

NS,α (13.13)

where the rate constant is defined as
k = AT NT e−Ea/RT (13.14)

A is the pre-exponential factor [ ((mol/cm3)1−n)/s ], where n = ∑NS,α is the order of the reaction,

Ea is the activation energy [ J/mol ],

NS,α is an array containing the concentration exponents (default 1),

NT is the temperature exponent (default is 0, meaning no temperature dependence).

If we use Arrhenius parameters found from experiments or the literature (for this case Westbrook and
Dryer [30]), the rate expression for the single-step propane reaction defined by Eq. (13.12) becomes:

dCC3H8

dt
=−8.6×1011 T 0 e−125520/RT CC3H8

0.1 CO2
1.65 (13.15)

and the resulting REAC line is:

&REAC ID = 'R1'
FUEL = 'PROPANE'
A = 8.6e11
E = 125520
SPEC_ID_NU = 'PROPANE','OXYGEN','CARBON DIOXIDE','WATER VAPOR'
NU = -1,-5,3,4
SPEC_ID_N_S = 'PROPANE','OXYGEN'
N_S = 0.1,1.65

The array SPEC_ID_NU contains the list of tracked species participating in the reaction as a product or reac-
tant. Note that a primitive species with LUMPED_COMPONENT_ONLY=.TRUE. cannot be used in a reaction
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since it is not tracked separately. The array SPEC_ID_N_S contains the list of species with the exponents,
N_S, in Eq. (13.13). This array must contain only primitive species, i.e., no species mixtures. The array of
stoichiometric coefficients, NU, can be taken directly from Eq. (13.12). If we extend Eq. (13.12) to include
reactions from Westbrook and Dryer [30] that account for carbon monoxide production, we obtain:

C3H8 +3.5O2→ 3CO+4H2O (13.16)

CO+0.5O2 � CO2

In this case we will combine fast chemistry with finite-rate chemistry to create a mixed reaction mechanism.
As before, we use primitive species rather than mixtures. A REAC line is needed for each reaction including
the reverse reaction. The propane oxidation reaction is a fast chemistry while the reversible carbon monoxide
reaction is finite-rate. The Arrhenius parameters are modified from Andersen et al. [31]:

&REAC ID = 'R1'
FUEL = 'PROPANE'
SPEC_ID_NU = 'PROPANE','OXYGEN','CARBON MONOXIDE','WATER VAPOR'
NU = -1,-3.5,3,4
CRITICAL_FLAME_TEMPERATURE = 730./

&REAC ID = 'R2'
FUEL = 'CARBON MONOXIDE'
A = 1.5e9
E = 41840
SPEC_ID_NU = 'CARBON MONOXIDE','OXYGEN','CARBON DIOXIDE'
NU = -1,-0.5,1
SPEC_ID_N_S = 'OXYGEN','CARBON MONOXIDE','WATER VAPOR'
N_S = 0.25,1,0.5/

&REAC ID = 'R3'
FUEL = 'CARBON DIOXIDE'
A = 6.16e13
E = 328026
SPEC_ID_NU = 'CARBON DIOXIDE','OXYGEN','CARBON MONOXIDE'
NU = -1,0.5,1
SPEC_ID_N_S = 'OXYGEN','CARBON DIOXIDE','WATER VAPOR'
N_S = -0.25,1,0.5
N_T = -0.97/

For REAC ID=’R2’, the reaction rate depends on the water vapor concentration, as indicated by its assign-
ment of a value of N_S. However, it does not explicitly participate in the reaction because it is not assigned
a stoichiometric coefficient, NU. Reactions of this sort are often written in textbooks as

aX+bY H2O−→ XaYb (13.17)

However, for the purposes of inputting into FDS, since H2O is neither a product nor a reactant it would
not be specified in the chemical reaction using either EQUATION or NU. It would instead be given a rate
exponent using N_S to indicate that its presence is required.

Some reactions require the presence of any third body to stabilize the reaction rather than just a specific
species. Reactions of this type are often write in textbooks as

aX+bY+M→ XaYb +M (13.18)

This type of reaction can be done by adding THIRD_BODY=.TRUE. to the REAC line for the reaction.
The species M should not otherwise be defined.
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As discussed previously (Section 13.1.2), energy release is calculated using the net change of species
in a time step along with the enthalpy of formation of each species. This approach makes specifying an
endothermic reaction, such as the reversible CO2 reaction (R3), no different than typical FDS exothermic
combustion reactions.

13.4 Special Topic: Chemical Time Integration

A diagnostic tool for the time integration of chemical reactions is the number of subiterations the ODE solver
takes for a given FDS timestep. For infinitely fast chemistry the number of CHEMICAL SUBITERATIONS

should always be 1. For finite rate chemical reactions the number can vary between 1 and the minimum
between MAX_CHEMISTRY_ITERATIONS and the number needed to satisfy the error tolerance of the ODE
solver. If the maximum value is reached, the user can increase the number of iterations or decrease reduce
the error tolerate constraints of the integrator.

13.5 Special Topic: Aerosol Deposition

It is possible within FDS to model the deposition of smoke and aerosols onto solid surfaces. The aerosol
deposition model is invoked by defining a species with the parameter AEROSOL=.TRUE. on the SPEC line
along with the parameters DENSITY_SOLID, CONDUCTIVITY_SOLID, and MEAN_DIAMETER. By default,
with AEROSOL=.TRUE., FDS will compute all of the aerosol deposition mechanisms discussed in the Tech-
nical Reference Guide [1]. For diagnostic purposes, each deposition mechanism can be selectively dis-
abled by using the logical parameters GRAVITATIONAL_DEPOSITION, THERMOPHORETIC_DEPOSITION,
TURBULENT_DEPOSITION, and GRAVITATIONAL_SETTLING on the MISC line. GRAVITATIONAL_SETTLING
controls the downward movement of aerosols in the gas phase, whereas GRAVITATIONAL_DEPOSITION
controls the deposition of aerosols onto upward-facing surfaces due to gravity. The deposition velocity at
the wall can be output using QUANTITY=’DEPOSITION VELOCITY’ for a wall cell with DEVC or BNDF.

13.5.1 Example Case: Soot Deposition from a Propane Flame

The propane_flame_deposition example shows how to define a reaction that invokes the aerosol de-
position model in FDS. The fuel is propane with a specified soot yield of 0.05. Note that this is a fabricated
soot yield that is used only for demonstration and verification purposes. The reaction is given by:

1 (C3H8)︸ ︷︷ ︸
Fuel

+4.81308 (O2 + 3.7619 N2)︸ ︷︷ ︸
Air

−→

1 (18.10631 N2 + 2.81813 CO2 + 3.98990 H2O)︸ ︷︷ ︸
Products

+ 0.20201 C0.9H0.1︸ ︷︷ ︸
Soot

(13.19)

Note that the stoichiometric coefficient for soot ensures that the mass of soot produced is 0.05 times the
mass of fuel consumed. This example uses the lumped species formulation to minimize the number of
scalar transport equations that need to be solved. Note that for soot to deposit it must be explicitly tracked
by defining AEROSOL=.TRUE. on the SPEC line.

&SPEC ID = 'PROPANE' /
&SPEC ID = 'OXYGEN', LUMPED_COMPONENT_ONLY = .TRUE. /
&SPEC ID = 'NITROGEN', LUMPED_COMPONENT_ONLY = .TRUE. /
&SPEC ID = 'WATER VAPOR', LUMPED_COMPONENT_ONLY = .TRUE. /
&SPEC ID = 'CARBON DIOXIDE', LUMPED_COMPONENT_ONLY = .TRUE. /
&SPEC ID = 'SOOT', AEROSOL = .TRUE. /
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If Eq. (13.19) is properly balanced, you can directly use the stoichiometric coefficients of the primitive
species to define the lumped species:

&SPEC ID = 'AIR', SPEC_ID ='NITROGEN','OXYGEN',
VOLUME_FRACTION = 3.7619,1., BACKGROUND = .TRUE. /

&SPEC ID = 'PRODUCTS', SPEC_ID ='NITROGEN','CARBON DIOXIDE','WATER VAPOR',
VOLUME_FRACTION = 18.10631,2.81813,3.98990 /

The heat of combustion for propane is found in the SFPE Handbook [29].

&REAC FUEL = 'PROPANE', HEAT_OF_COMBUSTION=44715.,
SPEC_ID_NU = 'PROPANE','AIR','PRODUCTS','SOOT',
NU=-1.,-4.81308,1,0.20208/

Note: The sign of NU corresponds to whether that species is consumed (-) or produced (+). Figure 13.3
shows the soot surface deposition on the wall. This boundary quantity is given by the input below.

&BNDF QUANTITY='SURFACE DEPOSITION', SPEC_ID='SOOT' /

Figure 13.3: Wall soot deposition for the propane_flame_deposition test case.

156



Chapter 14

Radiation

For most FDS simulations, thermal radiation transport is computed by default and you need not set any
parameters to make this happen. However, there are situations where it is important to be aware of issues
related to the radiative transport solver.

14.1 Basic Radiation Parameters: The RADI Namelist Group

RADI is the namelist group that contains all of the parameters related to the radiation solver. There can be
only one RADI line in the input file. It is possible to turn off the radiation transport solver (saving roughly
20 % in CPU time) by adding the statement RADIATION=.FALSE. to the RADI line. If burning is taking
place and radiation is turned off, then the total heat release rate is reduced by the RADIATIVE_FRACTION,
which is an input on the REAC line. This radiated energy completely disappears from the calculation. For
fire scenarios it is not recommended that you turn off the radiation transport. This feature is used mainly for
diagnostic purposes or when the changes in temperature are relatively small.

14.1.1 Radiative Fraction

The most important radiation parameter is the fraction of energy released from the fire as thermal radiation,
commonly referred to as the radiative fraction, symbolically denoted χr. It is a function of both the flame
temperature and chemical composition, neither of which are reliably calculated in a large scale fire calcu-
lation because the flame sheet is not well-resolved on a relatively coarse numerical grid. In calculations in
which the mesh cells are on the order of a centimeter or larger, the temperature near the flame surface cannot
be relied upon when computing the source term in the radiation transport equation, especially because of the
T 4 dependence. As a practical alternative, the parameter RADIATIVE_FRACTION on the REAC line allows
you to specify explicitly the fraction of the total combustion energy that is released in the form of thermal
radiation. Some of that energy may be reabsorbed elsewhere, yielding a net radiative loss from the fire or
compartment that is less than the RADIATIVE_FRACTION, depending mainly on the size of the fire and the
soot loading. If it is desired to use the radiation transport equation as is, then RADIATIVE_FRACTION ought
to be set to zero, and the source term in the radiative transport equation is then based solely on the gas tem-
perature and the chemical composition. By default, the RADIATIVE_FRACTION is based on the reaction’s
FUEL for an LES calculation (see 14.1), and zero for DNS.

Multi-fuel radiative fraction If multiple fuels are present, e.g., one fuel for cardboard and one fuel for
polystyrene combustion, then the radiant fraction will be computed locally as reaction-weighted value, sim-
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Table 14.1: Default Radiative Fraction based on species

Species χr

ACETONE 0.30
ACETYLENE 0.45
BENZENE 0.45
BUTANE 0.35
DODECANE 0.40
ETHANE 0.25
ETHANOL 0.20
ETHYLENE 0.35
HYDROGEN 0.10
ISOPROPANOL 0.30
METHANE 0.20
METHANOL 0.20
N-DECANE 0.40
N-HEPTANE 0.40
N-HEXANE 0.40
N-OCTANE 0.40
PROPANE 0.30
PROPYLENE 0.35
TOLUENE 0.45
All other species 0.35

ilar to the approach described by Gupta et al. [32]. For example, if the two fuels are 20% and 40% radiative
fraction with, respectively, 80% and 20% of the heat in a grid cell, χr would be 0.8×0.2+0.2×0.4 = 0.24.
Thus, χr will vary in space and time. The value of the multi-fuel radiative fraction can be output using the
output QUANTITY of CHI_R.

Time variation of radiative fraction Even for a single fuel species the global flame radiative fraction may
depend on other parameters of the problem like global equivalent ratio. If a time variation of the radiative
fraction is necessary, it may be added through a ramp function, RAMP_CHI_R, on the REAC line. The results
of running the ramp_chi_r test case containing the RAMP given below is shown in Fig. 14.1.

&REAC FUEL='METHANE', RADIATIVE_FRACTION=1.0, RAMP_CHI_R='CHI_R RAMP' /
&RAMP ID='CHI_R RAMP', T= 0.0, F=0.238 /
&RAMP ID='CHI_R RAMP', T= 2.0, F=0.238 /
&RAMP ID='CHI_R RAMP', T= 4.0, F=0.182 /
&RAMP ID='CHI_R RAMP', T= 6.0, F=0.158 /
&RAMP ID='CHI_R RAMP', T= 8.0, F=0.140 /
&RAMP ID='CHI_R RAMP', T= 10.0, F=0.140 /
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Figure 14.1: Results of the ramp_chi_r test case.

14.1.2 Spatial and Temporal Resolution of the Radiation Transport Equation

There are several ways to improve the spatial and temporal accuracy of the Finite Volume Method in solving
the radiation transport equation (RTE), but these will increase the computation time. You can increase
the number of angles from the default 100 with the integer parameter NUMBER_RADIATION_ANGLES. The
frequency of calls to the radiation solver can be changed from every 3 time steps with an integer called
TIME_STEP_INCREMENT. The increment over which the angles are updated can be reduced from 5 with
the integer called ANGLE_INCREMENT. If TIME_STEP_INCREMENT and ANGLE_INCREMENT are both set
to 1, the radiation field is completely updated in a single time step, but the cost of the calculation increases
significantly. By default, the radiation transport equation is fully updated every 15 time steps.

If you are using multiple meshes, the radiation solver cannot transfer energy from mesh to mesh within
a single time step. If you notice an obvious delay in the propagation of radiative intensity from one mesh
to another, you can increase the number of times the radiative intensity is updated within a single time step
using RADIATION_ITERATIONS, which is 1 by default.

The radiation solver is called before the start of the calculation to establish the radiation field in the event
that you specify something to have a non-ambient temperature initially. By default, the radiation and wall
boundary routines are iterated 10 times to establish thermal equilibrium. To change the number of iterations,
set NUMBER_INITIAL_ITERATIONS on the RADI line.

14.2 Radiative Absorption and Scattering

By default FDS employs a gray gas model for the radiation absorption coefficient, a function of gas compo-
sition and temperature, which are tabulated in a look-up table using the routines found in RadCal. You can
output the absorption coefficient using the output QUANTITY ’ABSORPTION COEFFICIENT’.

14.2.1 RadCal Considerations

There are several considerations with regard to RadCal:

Path Length

Because RadCal computes effective absorption coefficients over a range of wavelengths, it requires a user-
specified PATH_LENGTH (m). Its default value is five times the width of a single grid cell.
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Fuel Species

The original version of RadCal included only absorption data for methane, which was used as a surro-
gate for any fuel. However, more fuel species have been added to RadCal. The current list of fuels in-
cludes: METHANE, ETHYLENE, ETHANE, PROPANE, N-HEPTANE, METHANOL, TOLUENE, PROPYLENE, and
MMA. These species are in addition to the RadCal species of: CARBON DIOXIDE, CARBON MONOXIDE,
WATER VAPOR, and SOOT.

14.2.2 Radiative Absorption and Scattering by Particles

The absorption and scattering of thermal radiation by Lagrangian particles is included in the radiation
transport equation. The radiative properties can be given by specifying the components of the mate-
rial refractive index on the corresponding PART line, using keywords REAL_REFRACTIVE_INDEX and
COMPLEX_REFRACTIVE_INDEX. Alternatively, wavelength dependent values of these two quantities can
be tabulated in a TABLE and called using the RADIATIVE_PROPERTY_TABLE. More details can be found in
Section 15.3.2.

The radiative properties of the water and fuel particles (droplets) are determined automatically. For fuel,
the properties of heptane are assumed. The heptane values can be overriden by specifying them on the PART
line.

Other parameters affecting the computations of particle-radiation interaction are listed here. RADTMP

is the assumed radiative source temperature. It is used in the spectral weighting during the computation
of the mean scattering and absorption cross sections. The default is 900 ◦C. NMIEANG is the number of
angles in the numerical integration of the Mie-phase function. Increasing NMIEANG improves the accuracy
of the radiative properties of water droplets. The cost of the better accuracy is seen in the initialization
phase, not during the actual simulation. The default value for NMIEANG is 15. For each class of particles,
the Mie coefficients are calculated for a wide range of droplet diameters to ensure that the all possible run-
time situations can be covered. To speed up the initialization phase, the range of diameters can be limited by
parameters MIE_MINIMUM_DIAMETER and MIE_MAXIMUM_DIAMETER. Also, the size of the Mie coefficient
tables can be specified using MIE_NDG parameter.

The radiation properties of most common gases involved in combustion processes (water vapor, carbon
dioxide, carbon monoxide, fuel) and soot particles are automatically taken into account if the simulation
involves combustion. In simulations with no combustion nor radiating species, it is possible to use a constant
absorption coefficient by specifying KAPPA0 on the RADI line.

14.2.3 Wide Band Model

The radiation solver has two modes of operation – a gray gas model (default) and a wide band model [1].
If the optional six band model is desired, set WIDE_BAND_MODEL=.TRUE. It is recommended that this
option only be used when the fuel is relatively non-sooting because it adds significantly to the cost of
the calculation. Read the FDS Technical Reference Guide [18] for more details. Note also that when
WIDE_BAND_MODEL=.TRUE., the output QUANTITY ’ABSORPTION COEFFICIENT’ becomes practically
useless, because it then corresponds to one individual band of the spectrum.

It is also possible to set your own band limits for the wide band model by specifying BAND_LIMITS

on the RADI line. The limits should be given in ascending order, in units of microns (µm). The maximum
number of bands is 9, in which case you would specify 10 real numbers separated by commas.
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Chapter 15

Particles and Droplets

Lagrangian particles can be used to represent a wide variety of objects that are too small to resolve on the
numerical grid. FDS considers three major classes of Lagrangian particles: massless tracers, liquid droplets,
and everything else. The parameters describing particles are found on the PART line.

15.1 Basics

Properties of different types of Lagrangian particles are designated via the PART namelist group. Once
a particular type of particle has been described using a PART line, then the name of that particle type is
invoked elsewhere in the input file via the parameter PART_ID. There are no reserved PART_IDs – all must
be defined. For example, an input file may have several PART lines that include the properties of different
types of Lagrangian particles:

&PART ID='my smoke',... /
&PART ID='my water',... /

Particles are introduced into the calculation in several different ways: they may be introduced via a sprinkler
or nozzle (liquid droplets are usually introduced this way), they may be introduced at a blowing vent or
burning surface (mass tracer particles or particles representing embers are usually introduced this way), and
they may be introduced randomly or at fixed points within a designated volume (solid particles that represent
subgrid-scale objects are usually introduced this way). Details are found below.

The way to describe particles depends on the type. If you simply want massless tracers, specify
MASSLESS=.TRUE. on the PART line. If you specify a SPEC_ID, then FDS automatically assumes that
you want relatively small, thermally-thin evaporating liquid droplets. For any other type of particle, such
as particles that represent subgrid-scale objects, like office clutter or vegetation, you add a SURF_ID to the
PART line. All of these different types of particles are described below.

15.2 Massless Particles

The simplest use of Lagrangian particles is for visualization, in which case the particles are considered
massless tracers. In this case, the particles are defined via the line

&PART ID='tracers', MASSLESS=.TRUE., ... /

Note that if the particles are MASSLESS, it is not appropriate to color them according to any particular
property. Particles are not colored by gas phase quantities, but rather by properties of the particle itself. For
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example, ’PARTICLE TEMPERATURE’ for a non-massless particle refers to the temperature of the particle
itself rather than the local gas temperature. Also note that if MASSLESS=.TRUE., the SAMPLING_FACTOR
(Section 17.9) is set to 1 unless you say otherwise, which would be pointless since MASSLESS particles are
for visualization only.

Turbulent Dispersion

Massless tracer particles may also be useful in modeling dispersion of a tracer gas that does not affect the
mean flow field (passive scalar). The number density of the particles then may be translated into a local
mass concentration. See how to output number concentration in Sec. 17.10.7. To properly account for
subgrid-scale (unresolved) turbulent motions, add the parameter TURBULENT_DISPERSION=.TRUE. to the
PART line. The particles will then undergo a random walk based on the subgrid diffusivity. For further
information, see the random_walk test cases in the WUI directory of the verification suite.

15.3 Liquid Droplets

To define an evaporating liquid droplet, you must explicitly specify the gaseous species via the SPEC

namelist group (see Section 12), and then designate the appropriate SPEC_ID on the PART line. If the
droplets are defined with SPEC_ID=’WATER VAPOR’, then the particles will be assigned the thermo-physical
properties of water, the radiation absorption properties of water, and will be colored blue in Smokeview.

15.3.1 Thermal Properties

The following parameters should be specified to control the evaporation. The INITIAL_TEMPERATURE of
liquid droplet; assumed ambient, TMPA (◦C) is specified on PART input. If the fluid given by the SPEC_ID is
included in Table 12.1, then no further inputs are required. Otherwise, you must provide all of the following
properties of the liquid on the SPEC input:

DENSITY_LIQUID The density of the liquid or solid droplet/particle (kg/m3).

SPECIFIC_HEAT_LIQUID Specific heat of liquid or solid droplet/particle (kJ/(kg ·K)).

RAMP_CP_L Ramp of temperature vs. specific heat for the solid droplet/particle.

VAPORIZATION_TEMPERATURE Boiling temperature of liquid droplet (◦C).

MELTING_TEMPERATURE Melting (solidification) temperature of liquid droplet (◦C).

HEAT_OF_VAPORIZATION Latent heat of vaporization of liquid droplet (kJ/kg).

ENTHALPY_OF_FORMATION The heat of formation of the gas (kJ/mol).

H_V_REFERENCE_TEMPERATURE The temperature corresponding to the provided HEAT_OF_VAPORIZATION
(◦C).

15.3.2 Radiative Properties

The radiative properties of water and fuel droplets are determined automatically. For fuel, the proper-
ties of heptane are assumed. For other types of particles, the radiative properties can be given by spec-
ifying the components of the material refractive index on the corresponding PART line, using keywords
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REAL_REFRACTIVE_INDEX and COMPLEX_REFRACTIVE_INDEX. Alternatively, wavelength dependent val-
ues of these two quantities can be specified using a spectral property TABLE and specifying the ID of that
table is RADIATIVE_PROPERTY_TABLE property on the PART line. Each row of a spectral property table
contains three real numbers: wavelength (µm), real and complex components of the refractive index. The
real part of the refractive index should be a positive number. If it is greater than 10.0, the particles are treated
as perfectly reflecting spheres. The complex part should be a non-negative number. Values less than 10−6

are treated as non-absorbing. Below is an example of the use of spectral property table, listing the properties
at wavelengths 1, 5 and 10 µm.

&PART ID='particles',..., RADIATIVE_PROPERTY_TABLE='table' /
&TABL ID='table', TABLE_DATA= 1.0,1.33,0.0001 /
&TABL ID='table', TABLE_DATA= 5.0,1.33,0.002 /
&TABL ID='table', TABLE_DATA=10.0,1.33,0.001 /

For calculating the absorption of thermal radiation by particles, FDS uses a running average of particle
temperature and density. The default averaging factor, RUN_AVG_FAC, is set to 0.5.

15.3.3 Size Distribution

The size distribution of liquid droplets is specified using a cumulative volume fraction (CVF)1 indicated by
the character string DISTRIBUTION on the PART line. The default is ’ROSIN-RAMMLER-LOGNORMAL’:

F(D) =


1√
2π

∫ D

0

1
σ D′ exp

(
− [ln(D′/Dv,0.5)]

2

2σ2

)
dD′ (D≤ Dv,0.5)

1− exp
(
−0.693

(
D

Dv,0.5

)γ)
(D > Dv,0.5)

(15.1)

Alternatively, you can specify ’LOGNORMAL’ or ’ROSIN-RAMMLER’ alone rather than the combination of
the two. Figure 15.1 displays the possible size distributions. Notice that the ’LOGNORMAL’ and
’ROSIN-RAMMLER’ distributions have undesirable attributes at opposite tails, which is why the combina-
tion of the two is commonly used. Figure 15.1 also shows a comparison between the prescribed distribution
and the actual realized distribution of droplet sizes. The dashed lines show the measured droplet size dis-
tributions, while the solid lines show the prescribed sampling distributions. The sampled distributions are
measured with the PDPA_HISTOGRAM function. Sample size of 10000 droplets was used.

The median volumetric diameter, Dv,0.5, is specified via the parameter DIAMETER (µm) on the PART

line. You must specify the DIAMETER in cases where the droplets evaporate (in which case you also need
to specify a SPEC_ID to indicate the gas species generated by the evaporating droplets). The width of the
lognormal distribution, σ , is specified with SIGMA_D on the PART line. The width of the Rosin-Rammler
distribution, γ , is specified with GAMMA_D (default 2.4). Note that in the combined distribution, the param-
eter, σ , is calculated σ = 2/(

√
2π (ln 2) γ) = 1.15/γ which ensures that the two functions are smoothly

joined at D = Dv,0.5. You can also add a value for SIGMA_D to the PART line if you want to over-ride this
feature. The larger the value of γ , the narrower the droplet size is distributed about the median value.

You can specify your own cumulative number fraction (CNF)2 by specifying a CNF_RAMP_ID on the
PART line and including a RAMP that gives the CNF:

&PART ID='my droplets',..., CNF_RAMP_ID='my CNF' /
&RAMP ID='my CNF', T= 0., F=0.000000 /

1The CVF indicates the fraction of total mass carried by droplets less than the given diameter.
2The CNF indicates the fraction of total droplets whose diameters are less than the given diameter.
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Figure 15.1: Droplet size distributions. The first three plots are based on a specified CVF from which the
CNF is derived. The fourth plot (lower right) is an example of a specified CNF from which the CVF is
derived. CVF:s are plotted with black lines, while CNF:s are plotted with red lines. The solid lines show the
prescribed sampling distribution, while the dashed lines show the actual sampled droplet size distribution,
measured with the PDPA_HISTOGRAM functionality.

&RAMP ID='my CNF', T= 200., F=0.000003 /
...
&RAMP ID='my CNF', T=2000., F=1.000000 /

Note that the RAMP variable T indicates the diameter and is given in micrometers. The fourth plot in Fig. 15.1
is an example of where the CNF is specified and the CVF is calculated from it. It is essentially the reverse
of what is shown in the first plot, where the CVF is specified and the CNF is calculated from it.

As droplets are created in the simulation, their diameters are randomly chosen based on the given distri-
bution. You can prevent excessively large droplets from being chosen by specifying a MAXIMUM_DIAMETER,
which is assigned an infinitely large value by default. Droplets less than a specified MINIMUM_DIAMETER

are assumed to evaporate in a single time step. The default value is 0.005 times the value of DIAMETER. The
droplet distribution is divided into a series of bins3. To avoid very small particle weights, the distribution is
clipped at the cumulative fractions of CNF_CUTOFF and (1 - CNF_CUTOFF). Note that CNF_CUTOFF is set
on the MISC line. The default value of CNF_CUTOFF is 0.005.

3By default, the range of particle sizes is divided into six bins, and the sampled particles are divided among these bins. This
ensures that a reasonable number of particles are assigned to the entire spectrum of sizes. To change the default number of bins, set
N_STRATA on the PART line.
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To prevent FDS from generating a distribution of droplets altogether, set MONODISPERSE to .TRUE. on
the PART line, in which case every droplet will be assigned the same DIAMETER.

If you set CHECK_DISTRIBUTION=.TRUE. on the PART line, FDS will write out the cumulative distri-
bution function for that particular particle class in a file called CHID_PART_ID_cdf.csv. If you do this,
you might want to avoid spaces in the ID of the PART line.

15.3.4 Secondary Breakup

If BREAKUP=.TRUE. is set on the PART line, particles may undergo secondary breakup. In this case you
should also specify the SURFACE_TENSION (N/m) of the liquid and the resulting ratio of the Sauter mean di-
ameters, BREAKUP_RATIO. Its default is 3/7. Optionally, specify the distribution parameters
BREAKUP_GAMMA_D and BREAKUP_SIGMA_D.

15.3.5 Fuel Droplets

If the droplets evaporate into the FUEL identified on the REAC line, they will be colored yellow by default in
Smokeview and any resulting fuel vapor will burn according to the combustion model specified on the REAC
line. The droplets evaporate into an equivalent amount of fuel vapor such that the resulting heat release rate
(assuming complete combustion) is equal to the evaporation rate multiplied by the HEAT_OF_COMBUSTION,
also specified on the PART line. Note that the burning rate will be adjusted to account for the difference
between the heats of combustion of the droplets and the other fuels in the model.

If a spray nozzle is used to generate the fuel droplets, its characteristics are specified in the same way
as those for a sprinkler. If the fuel species is present in the liquid properties table as a fuel, then the droplets
will be given fuel radiation absorption properties.

Note that to limit the computational cost of sprinkler simulations, liquid droplets disappear when they
hit the “floor” of the computational domain, regardless of whether it is solid or not. However, this may not
be desired when using liquid fuels. To stop FDS from removing liquid droplets from the floor of the domain,
add the phrase POROUS_FLOOR=.FALSE. to the MISC line. An altnerate solution is make sure the OBST the
fuel is landing on is at least one cell thick.

Example Case: spray_burner

Controlled fire experiments are often conducted using a spray burner, where a liquid fuel is sprayed out
of a nozzle and ignited. In this example (spray_burner.fds), heptane from two nozzles is sprayed
downwards into a steel pan. The flow rate is increased linearly so that the fire grows to 2 MW in 20 s, burns
steadily for another 20 s, and then ramps down linearly in 20 s. The key input parameters are given here:

&REAC FUEL='N-HEPTANE',SOOT_YIELD=0.01,HEAT_OF_COMBUSTION=44500./

&DEVC ID='nozzle_1', XYZ=4.0,-.3,0.5, PROP_ID='nozzle', QUANTITY='TIME', SETPOINT=0. /
&DEVC ID='nozzle_2', XYZ=4.0,0.3,0.5, PROP_ID='nozzle', QUANTITY='TIME', SETPOINT=0. /

&PART ID='heptane droplets', SPEC_ID='N-HEPTANE',
QUANTITIES(1:2)='PARTICLE DIAMETER','PARTICLE TEMPERATURE',
DIAMETER=1000., HEAT_OF_COMBUSTION=44500., SAMPLING_FACTOR=1 /

&PROP ID='nozzle', CLASS='NOZZLE', PART_ID='heptane droplets',
FLOW_RATE=1.97, FLOW_RAMP='fuel', PARTICLE_VELOCITY=10.,
SPRAY_ANGLE=0.,30. /

&RAMP ID='fuel', T= 0.0, F=0.0 /
&RAMP ID='fuel', T=20.0, F=1.0 /
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&RAMP ID='fuel', T=40.0, F=1.0 /
&RAMP ID='fuel', T=60.0, F=0.0 /

Many of these parameters are self-explanatory. Note that a 2 MW fire is achieved via 2 nozzles flowing
heptane at 1.96 L/min each:

2×1.97
L

min
× 1

60
min

s
×684

kg
m3 ×

1
1000

m3

L
×44500

kJ
kg

= 2000 kW (15.2)

The parameter HEAT_OF_COMBUSTION over-rides that for the overall reaction scheme. Thus, if other
droplets or solid objects have different heats of combustion, the effective burning rates are adjusted so
that the total heat release rate is that which you expect. However, exercises like this ought to be conducted
just to ensure that this is the case. The HRR curve for this example is given in Fig. 15.2.
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Figure 15.2: Heat Release Rate (HRR) of spray burner test.

Note also that this feature is subject to mesh dependence. If the mesh cells are too coarse, the evaporating
fuel can be diluted to such a degree that it may not burn. Proper resolution depends on the type of fuel and
the amount of fuel being ejected from the nozzle. Always test your burner at the resolution of your overall
simulation.
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15.4 Solid Particles

Lagrangian particles can represent a wide variety of subgrid-scale objects, from office clutter to vegetation.
To create solid, non-liquid particles, you must add a SURF_ID to the PART line. The specified SURF line
contains the parameters that describe the thermophysical properties and geometric parameters of the particle.
These properties are the same as those you would apply to an OBST or VENT. FDS uses the same solid phase
conduction and pyrolysis algorithm for particles as it does for solid walls.

If the SURF line that is associated with the particle class calls for it, the particles will heat up due to
convection from the surrounding gases and radiation from near and distant sources. The convective heat
transfer coefficient takes into account the particle geometry, and the radiative heat flux is based on the
integrated intensity. That is, the radiation heat flux is the average over all angles. However, you can specify
unique directions for the particle if the source of heating does not surround the particles. More about particle
splitting is explained in Section 15.4.3.

15.4.1 Basic Geometry and Boundary Conditions

To demonstrate the basic syntax for solid particles, the following input lines create a collection of hot
spheres:

&PART ID='spheres', SURF_ID='HOT', STATIC=.TRUE., PROP_ID='ball' /
&SURF ID='HOT', TMP_FRONT=500., RADIUS=0.005, GEOMETRY='SPHERICAL' /
&PROP ID='ball', SMOKEVIEW_ID='SPHERE', SMOKEVIEW_PARAMETERS(1)='D=0.01' /
&INIT PART_ID='spheres', XB=0.25,0.75,0.25,0.75,0.25,0.75, N_PARTICLES=10 /

The PART line establishes the class of particles. In this case, the presence of a SURF_ID indicates that
the particles are solids with the properties given by the SURF line ’HOT’. STATIC is a logical parameter
whose default is .FALSE. that indicates if the particles are stationary. The PROP_ID references a PROP

(property) line that just tells Smokeview that the particles are to be drawn as spheres of diameter 0.01 m.
See Section 16.7.3 for details and options. The INIT line randomly fills the given volume with 10 of these
hot spheres. See Section 15.5.3 for details.

If the SURF line includes a MATL_ID, the particle mass will be based upon the value(s) of DENSITY
of the referenced MATL line(s). If there is to be no heat conduction calculation in depth, do not specify a
MATL_ID. Instead, you can specify, for example, the surface temperature, TMP_FRONT (◦C), heat release
rate per unit area, HRRPUA (kW/m2), or species MASS_FLUX (kg/(m2 · s)).

The GEOMETRY options for solid particles are ’SPHERICAL’, ’CYLINDRICAL’, or ’CARTESIAN’.
By default, the GEOMETRY is ’CARTESIAN’, in which case you need to provide the LENGTH and WIDTH

of the rectangular plate. It is assumed that the plate is symmetric front and back (note this means you
should set BACKING=’INSULATED’ on the SURF line). You need only specify the layers that make up
the half-thickness. The array THICKNESS(N) indicates the thickness(es) of each layer of the plate, not the
total thickness of the plate itself. If the plate is composed of only one material component, the specified
THICKNESS is taken as the half-thickness of the plate.

For ’CYLINDRICAL’ or ’SPHERICAL’ particles, specify the INNER_RADIUS and THICKNESS of the
individual layers. Alternatively, you can just specify the RADIUS if the cylinder or sphere is solid and has
only one material component. The default value of INNER_RADIUS is 0 m, which means that the radius
of the cylinder or sphere is the sum of the THICKNESS values. Remember that the layers are to be listed
starting at the surface, not the center. For ’CYLINDRICAL’ particles, specify a LENGTH as well.
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15.4.2 Drag

For solid particles, the default drag law (i.e., the drag coefficient correlation as a function of the Reynolds
number based on particle diameter) is that of a sphere. To invoke the cylinder drag law, set DRAG_LAW to
’CYLINDER’ on the PART line, and to invoke the screen drag law (see Section 15.4.8), set it to ’SCREEN’. If
neither of these options is applicable, you may specify a constant value of the drag coefficient for a particle
class (a specific PART_ID) by setting a DRAG_COEFFICIENT on the PART line. The DRAG_COEFFICIENT
over-rides the DRAG_LAW. If the local particle density is very high, the drag may be reduced by particle
wake effects. The threshold volume fraction for considering three-way coupling effects is controlled by
the DENSE_VOLUME_FRACTION parameter. Setting this parameter to 1 will turn off the three-way coupling
model.

15.4.3 Splitting Particles

If the radiation heat flux is not uniformly distributed about the particle, it may be useful to split the particle
into pieces, each with its own orientation. This can be done by using the parameter ORIENTATION to specify
more than one outward facing directions for the particle. For example,

&PART ..., ORIENTATION(1:3,1)=0,0,-1, ORIENTATION(1:3,2)=0,0,1 /

specifies that half the particle is facing downwards and half is facing upwards. FDS now essentially tracks
two particles. The radiative flux to the downward facing particle is the integrated average over the southern
hemisphere; the flux to the upward facing particle is the average over the northern hemisphere. The particle
mass and the surface area are scaled by the number of orientations. The splitting along the coordinate axis
is demonstrated for all geometries in Fig. 15.3. The orientation direction does not have to align with the
coordinate axes. In fact, the ORIENTATIONs do not have to be symmetric or come in pairs, even though
for most applications it makes sense to do it this way. For a Cartesian particle (i.e., a plate), only the
orientations that are perpendicular to the plate make physical sense. Keep in mind that the heat conducted
within the different facets does not transfer through to the other facets. The heat conduction is still only one
dimensional, in the direction normal to the face and towards the center.

Note that if only a single ORIENTATION vector is assigned on a PART line, the radiative flux to the
particle is calculated as if there is a flat plate normal to the direction of the vector, like a conventional
heat flux gauge. That is, the heat flux is not an integrated average over the entire particle but rather the
directional heat flux with the given orientation. The reason for this exception to the general rule is that
often single particles are used as “targets” to record a heat flux at a given point in the domain with a given
orientation. These particles can be thought of as tiny heat flux gauges that do not disturb the flow.

15.4.4 Gas Generating Particles

Lagrangian particles can be used to generate gases at a specified rate. The syntax is similar to that used for
a solid wall. For example, the following input lines create three particles – one shaped like a rectangular
plate, one a cylinder, and one a sphere – that generate argon, sulfur dioxide, and helium, respectively. The
particles have no mass; they simply are used to generate the gases at a specified rate.

&SPEC ID='ARGON' /
&SPEC ID='SULFUR DIOXIDE' /
&SPEC ID='HELIUM' /

&INIT PART_ID='plate', XYZ=-1.,0.,1.5, N_PARTICLES=1 /
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ORIENTATION(1:3,1)=0,0,-1

ORIENTATION(1:3,2)=0,0,1

=

ORIENTATION(:,1)=0,0,1

ORIENTATION(:,2)=-1,0,0

ORIENTATION(:,3)=0,0,-1

ORIENTATION(:,4)=1,0,0

ORIENTATION(:,6)=0,0,1

ORIENTATION(:,5)=0,0,-1

ORIENTATION(:,2)=1,0,0

ORIENTATION(:,1)=-1,0,0 ORIENTATION(:,3)=0,-1,0

Figure 15.3: Examples of a Cartesian (plate), cylindrical, and spherical particle split into multiple parts.
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&INIT PART_ID='tube', XYZ= 0.,0.,1.5, N_PARTICLES=1 /
&INIT PART_ID='ball', XYZ= 1.,0.,1.5, N_PARTICLES=1 /

&PART ID='plate', SAMPLING_FACTOR=1, SURF_ID='plate bc', STATIC=.TRUE. /
&PART ID='tube', SAMPLING_FACTOR=1, SURF_ID='tube bc', STATIC=.TRUE. /
&PART ID='ball', SAMPLING_FACTOR=1, SURF_ID='ball bc', STATIC=.TRUE. /

&SURF ID='plate bc', THICKNESS=0.001, LENGTH=0.05, WIDTH=0.05, SPEC_ID(1)='ARGON',
MASS_FLUX(1)=0.1, TAU_MF(1)=0.001 /

&SURF ID='tube bc', GEOMETRY='CYLINDRICAL', LENGTH=0.05, RADIUS=0.01,
SPEC_ID(1)='SULFUR DIOXIDE', MASS_FLUX(1)=0.1, TAU_MF(1)=0.001 /

&SURF ID='ball bc', GEOMETRY='SPHERICAL', RADIUS=0.01, SPEC_ID(1)='HELIUM',
MASS_FLUX(1)=0.1, TAU_MF(1)=0.001 /

In this case, there is no calculation of heat conduction in depth. Only the surface area is important. For the
plate, the surface area is twice the length times the width. For the cylinder, the area is twice the radius times
π times the length. For the sphere, the area is 4π times the radius squared. Figure 15.4 displays the output
of the test case called surf_mass_part_specified.fds, demonstrating that the production rate of the
gases is as expected.
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Figure 15.4: Gas production from three Lagrangian particles.

15.4.5 Vegetation

Lagrangian particles can be used to represent different types of vegetation, like leaves, grass, and so on. The
best way to explain how to use this feature is by way of example. Suppose we want to describe a collection
of wet pine needles that occupy a certain volume. The following lines have been extracted from the sample
file WUI/pine_needles.fds. Note that all of the values have been chosen simply to demonstrate the
technique. These values should not be used for a real calculation.

&PART ID='pine needles', SAMPLING_FACTOR=1, SURF_ID='wet vegetation',
PROP_ID='needle image', STATIC=.TRUE. /

&INIT PART_ID='pine needles', XB=0.,1.,0.,1.,0.,1., N_PARTICLES=1000,
MASS_PER_VOLUME=1. /

&PROP ID='needle image', SMOKEVIEW_ID='TUBE',
SMOKEVIEW_PARAMETERS='L=0.1','D=0.0005' /
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&SURF ID = 'wet vegetation'
MATL_ID(1,1:2) = 'PINE','MOISTURE'
MATL_MASS_FRACTION(1,1:2) = 0.8,0.2
THICKNESS = 0.00025
LENGTH = 0.1
GEOMETRY = 'CYLINDRICAL' /

&MATL ID = 'PINE'
DENSITY = 500.
CONDUCTIVITY = 0.1
SPECIFIC_HEAT = 1.0
N_REACTIONS = 1
REFERENCE_TEMPERATURE = 300.
NU_MATL = 0.2
NU_SPEC = 0.8
SPEC_ID = 'GLUCOSE'
HEAT_OF_REACTION = 1000
MATL_ID = 'CHAR' /

&MATL ID = 'MOISTURE'
DENSITY = 1000.
CONDUCTIVITY = 0.1
SPECIFIC_HEAT = 4.184
N_REACTIONS = 1
REFERENCE_TEMPERATURE = 100.
NU_SPEC = 1.0
SPEC_ID = 'WATER VAPOR'
HEAT_OF_REACTION = 2500. /

&MATL ID = 'CHAR'
DENSITY = 200.
CONDUCTIVITY = 1.0
SPECIFIC_HEAT = 1.6 /

In the example, 1 kg of pine needles occupy 1 m3. The number of particles used to represent the pine needles
is somewhat arbitrary. FDS will automatically weight the specified number so that the total mass per volume
is 1 kg. The needles are modeled as cylinders that are 0.5 mm in diameter. The THICKNESS on the SURF
line refers to the radius of the cylinder in units of m. The needles are all 0.1 m long. The needles contain
20 % (by mass) moisture, and 80 % cellulose. The moisture is set to evaporate at 100 ◦C to create water
vapor and the cellulose pyrolyzes at 300 ◦C to form fuel gas and char. In the example case, the original 1 kg
of vegetation is heated until all of the water and fuel evaporate. The fuel is not allowed to burn by setting
the ambient oxygen concentration to 1 %. Figure 15.5 shows the evolution of the fuel, water and char mass.
Agreement with the expected values means that mass is conserved.

15.4.6 Firebrands

Firebrands are small pieces of burning wood and vegetation that can be lofted into the air and blown by the
wind ahead of a wildland fire front. Manzello et al. [33] have developed a variety of experimental apparatus
designed to generate firebrands in a laboratory setting. The example input file called dragon_5a in the WUI
(Wildland-Urban Interface) folder is a very simple mock-up of one of these experiments. The word “dragon”
is based on the nickname of the apparatus; 5a is the figure number in Ref. [33] on which this example case is
loosely based. In the experiment, 700 g of small dowels (length 50 mm, diameter 8 mm) made of Ponderosa
Pine wood were poured into a small steel chamber equipped with several propane burners. The dowels
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Figure 15.5: Evolution of vegetation mass in the pine_needles test case.

were left to burn for roughly a minute subject to a slow induced air flow after which time the air flow was
increased and firebrands were propelled horizontally out of a 15 cm duct 2.25 m above the lab floor. It is
reported that after several replicate experiments, the average mass of the firebrands collected from pans on
the floor was 57 g. The average diameter of the collected dowels was 5.6 mm, and the average length was
13.5 mm.

It is not possible to simulate the experiment in FDS exactly as it was performed. The reason is that in
the experiment, all 700 g of the wooden dowels were poured into the heating chamber at once. FDS cannot
handle such a dense packing of Lagrangian particles. Instead, the simulated dowels are introduced at a rate
of 10 per second. FDS also does not have a mechanism to break-up the dowels, reducing their length from
50 mm to 13.5 mm. Thus, the initial cylindrical particles are 13.5 mm and remain that length throughout
the simulation. The diameter of the cylindrical particles is reduced, however, from 8 mm to 5.6 mm, which
takes the initial density of 440 kg/m3 down to 71 kg/m3 because the mass of the firebrands is assumed to be
8 % of the original. The plot in Fig. 15.6 shows the increasing mass of firebrands thrown to the floor in the
simulation after 100 s of particle insertion. The total mass of particles inserted into the apparatus is:

π (0.004 m)2× (0.0135 m)× (440 kg/m3)× (10 part/s)× (100 s)≈ 0.3 kg (15.3)

The amount expected on the floor is approximately 0.024 kg.

15.4.7 Porous Media

A 3-D array of particles can be used to represent the drag exerted by porous media, as in the following
example:

&SURF ID='LIGAMENT', MATL_ID='ALUMINUM ALLOY', THICKNESS=7.3E-5,
GEOMETRY='CYLINDRICAL', HEAT_TRANSFER_COEFFICIENT=10. /

&MATL ID='ALUMINUM ALLOY', DENSITY=2690., CONDUCTIVITY=218., SPECIFIC_HEAT=0.9 /
&PART ID='FOAM', DRAG_LAW='POROUS MEDIA', SURF_ID='LIGAMENT',

POROUS_VOLUME_FRACTION=0.12, STATIC=.TRUE.,
DRAG_COEFFICIENT=0.1,0.1,0.1, PERMEABILITY=1.0E-7,1.E-7,1.E-7 /

&INIT XB=1.010,1.095,0.0,0.5,0.0,0.5, N_PARTICLES_PER_CELL=1, CELL_CENTERED=.TRUE.,
PART_ID='FOAM' /
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Figure 15.6: Mass generation of firebrands in the dragon_5a test case.

These lines are a model of aluminum foam. The basic geometry of the foam ligaments is defined with the
SURF line. It is assumed that the ligaments are made of an aluminum alloy whose properties are given on
the MATL line. The radius of the assumed cylindrical ligament is indicated by the THICKNESS. Note that
the LENGTH of the cylinder which is normally required on the SURF line is computed automatically so that
the volume fraction of the grid cell occupied by the foam, specified by POROUS_VOLUME_FRACTION on the
PART line, is achieved. In a sense, the foam is modeled by a long cylinder chopped up into small pieces and
represented by a single particle in each grid cell.

The PART line provides information about the particles. The DRAG_LAW indicates a special empirical
model for the porous media. This model states that the pressure drop through the media is given by

∆p = δ
(

µ
K

u+ρ
Y√
K

u2
)

(15.4)

where δ is the thickness of the foam block in the flow direction, µ is the viscosity of the gas, u is the
velocity component in the flow direction, ρ is the density of the gas, K is the PERMEABILITY in units of
m2, and Y is a dimensionless inertial term that you specify using the parameter DRAG_COEFFICIENT. When
using the porous media model the PERMEABILITY and DRAG_COEFFICIENT must be specified for all three
directions.

The INIT line designates the volume occupied by the porous media using the sextuplet XB. A sin-
gle particle is inserted into the center of each cell occupied by the foam by specifying the parameters
N_PARTICLES_PER_CELL=1 and CELL_CENTERED=.TRUE..

A sample calculation involving porous media is contained in the folder Sprinklers_and_Sprays.
The input file is called porous_media.fds.

15.4.8 Screens

A 2-D array of particles can be used to represent the drag exerted by a window screen, as in the following
example:

&INIT N_PARTICLES_PER_CELL=1, CELL_CENTERED=.TRUE., PART_ID='SCREEN',
XB=1.01,1.02,0.0,1.0,0.0,1.0/

&PART ID='SCREEN', DRAG_LAW='SCREEN', FREE_AREA_FRACTION=0.4, STATIC=.TRUE.,
SURF_ID='SCREEN', ORIENTATION(1:3,1)=1,0,0 /

&SURF ID='SCREEN', THICKNESS=0.00015, GEOMETRY='CYLINDRICAL',
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MATL_ID='ALUMINUM' /
&MATL ID='ALUMINUM', DENSITY=2700., CONDUCTIVITY=200., SPECIFIC_HEAT=0.9 /

The INIT line designates the plane of the screen using the sextuplet XB. A single particle is inserted into
each cell by specifying the parameter N_PARTICLES_PER_CELL=1. The particles are be defined with a
SURF_ID containing the material properties of the screen. A special drag law for screens is specified via the
DRAG_LAW. ORIENTATION is the direction normal to the screen, and FREE_AREA_FRACTION is the fraction
of the screen’s surface area that is open. In the example, an aluminum screen with a 40 % free area and an
0.0003 m wire diameter is placed normal to the x-axis. Note that the LENGTH parameter on the SURF line
will be computed automatically so the fraction of the grid cell flow area occupied by the screen is equal to 1
- FREE_AREA_FRACTION. The pressure drop across the screen is given by

∆p = l
(

µ
K

u+ρ
Y√
K

u2
)

(15.5)

where l is the screen thickness (equal to the wire diameter), µ is the viscosity of the gas, u is the velocity
normal to the screen, ρ is the density of the gas, and Y and K are empirical constants given by

K = 3.44×10−9 FREE_AREA_FRACTION1.6 m2 (15.6)

Y = 0.043 FREE_AREA_FRACTION2.13 (15.7)

15.4.9 Electrical Cable Failure

Petra Andersson and Patrick Van Hees of the Swedish National Testing and Research Institute (SP) have
proposed that the thermally-induced electrical failure (THIEF) of a cable can be predicted via a simple one-
dimensional heat transfer calculation, under the assumption that the cable can be treated as a homogeneous
cylinder [34]. Their results for PVC cables were encouraging and suggested that the simplification of the
analysis is reasonable and that it should extend to other types of cables. The assumptions underlying the
THIEF model are as follows:

1. The heat penetration into a cable of circular cross section is largely in the radial direction. This greatly
simplifies the analysis, and it is also conservative because it is assumed that the cable is completely
surrounded by the heat source.

2. The cable is homogeneous in composition. In reality, a cable is constructed of several different types of
polymeric materials, cellulosic fillers, and a conducting metal, most often copper.

3. The thermal properties – conductivity, specific heat, and density – of the assumed homogeneous cable
are independent of temperature. In reality, both the thermal conductivity and specific heat of polymers
are temperature-dependent, but this information is very difficult to obtain from manufacturers.

4. It is assumed that no decomposition reactions occur within the cable during its heating, and ignition
and burning are not considered in the model. In fact, thermoplastic cables melt, thermosets form a char
layer, and both off-gas volatiles up to and beyond the point of electrical failure.

5. Electrical failure occurs when the temperature just inside the cable jacket reaches an experimentally
determined value.

Obviously, there are considerable assumptions inherent in the Andersson and Van Hees THIEF model, but
their results for various polyvinyl chloride (PVC) cables suggested that it may be sufficient for engineering
analyses of a wider variety of cables. The U.S. Nuclear Regulatory Commission sponsored a study of cable
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failure known as CAROLFIRE [35]. The primary project objective of CAROLFIRE was to characterize
the various modes of electrical failure (e.g., hot shorts, shorts to ground) within bundles of power, con-
trol and instrument cables. A secondary objective of the project was to develop a simple model to predict
thermally-induced electrical failure when a given interior region of the cable reaches an empirically deter-
mined threshold temperature. The measurements used for these purposes are described in Volume II of the
CAROLFIRE test report. Volume III describes the modeling.

The THIEF model can only predict the temperature profile within the cable as a function of time, given
a time-dependent exposing temperature or heat flux. The model does not predict at what temperature the
cable fails electrically. This information is gathered from experiment. The CAROLFIRE experimental
program included bench-scale, single cable experiments in which temperature measurements were made on
the surface of, and at various points within, cables subjected to a uniform heat flux. These experiments
provided the link between internal cable temperature and electrical failure. The model can only predict the
interior temperature and infer electrical failure when a given temperature is reached. It is presumed that the
temperature of the centermost point in the cable is not necessarily the indicator of electrical failure. This
analysis method uses the temperature just inside the cable jacket rather than the centermost temperature, as
that is where electrical shorts in a multi-conductor cable are most likely to occur first.

To use the THIEF model in FDS, add lines similar to the following to the input file:

&MATL ID='plastic', DENSITY=2535., CONDUCTIVITY=0.2, SPECIFIC_HEAT=1.5 /
&SURF ID='cylinder', THICKNESS=0.00815, LENGTH=0.1, MATL_ID='plastic',

GEOMETRY='CYLINDRICAL' /
&PART ID='Cable Segment', SURF_ID='cylinder', ORIENTATION(1:3,1)=0.,0.,1.,

STATIC=.TRUE. /
&INIT ID='Cable', XB=0.01,0.01,0.,0.,0.,0., N_PARTICLES=1, PART_ID='Cable Segment' /
&DEVC ID='Cable Temp', INIT_ID='Cable',

QUANTITY='INSIDE WALL TEMPERATURE', DEPTH=0.0015 /

The THIEF model assumes that the cable plastic material has a thermal conductivity of 0.2 W/(m ·K) and a
specific heat of 1.5 kJ/(kg ·K). If you change these values, you are no longer using the THIEF model. The
density is the mass per unit length of the cable divided by its cross sectional area. The THICKNESS is the
radius of the cylindrical cable in units of m. The LENGTH, in m, is needed by FDS because it assumes that
the cable is a cylindrical segment of a certain length. It has no impact on the simulation, and its value it
typically the size of a grid cell. The ORIENTATION tells FDS the direction of the prevailing radiative source.
The second argument indicates that there can be more than one ORIENTATION. STATIC=.TRUE. prevents
the cable from moving. The INIT line is used to position the cable within the computational domain. The
DEVC line records the cables inner temperature, in this case 1.5 mm below the surface. This is typically the
jacket thickness.

15.5 Particle Insertion

There are three ways of introducing droplets or particles into a simulation. The first way is to define a sprin-
kler or nozzle using a PROP line that includes a PART_ID that specifies the particle or droplet parameters.
The second way is to add a PART_ID to a SURF line, in which case particles or droplets will be ejected
from that surface. Note that this only works if the surface has a normal velocity pointing into the flow
domain. The third way to introduce particles or droplets is via an INIT line that defines a volume within
the computational domain in which the particles/droplets are to be introduced initially and/or periodically in
time.

It is not unusual to include hundreds of thousands of particles in a simulation. Visualizing all of the
particles in Smokeview can sometimes be impractical due to memory limitations. To limit the amount of
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particles, you can make use of the following parameters on the PART line:

SAMPLING_FACTOR Sampling factor for the output file CHID.prt5. This parameter can be used to reduce
the size of the particle output file used to animate the simulation. The default value is 1 for MASSLESS
particles, meaning that every particle or droplet will be shown in Smokeview. The default is 10 for all
other types of particles. MASSLESS particles are discussed in Section 15.2.

AGE Number of seconds the particle or droplet exists, after which time it is removed from the calcula-
tion. This is a useful parameter to use when trying to reduce the number of droplets or particles in a
simulation.

15.5.1 Particles Introduced at a Solid Surface

If the particles have mass and are introduced from a solid surface, specify PARTICLE_MASS_FLUX on the
SURF line. The number of particles inserted at each solid cell every DT_INSERT seconds is specified by
NPPC (Number of Particles Per Cell) on the SURF line defining the solid surface. The default value of
DT_INSERT is 0.01 s and NPPC is 1. As an example, the following set of input lines:

&PART ID='particles', ... /
&SURF ID='SLOT', PART_ID='particles', VEL=-5., PARTICLE_MASS_FLUX=0.1 /
&OBST XB=-0.2,0.2,-0.2,0.2,4.0,4.4, SURF_IDS='INERT','SLOT','INERT' /

creates an obstruction that ejects particles out of its sides at a rate of 0.1 kg/(m2 · s) and a velocity of 5 m/s
(the minus sign indicates the particles are ejected from the surface). FDS will adjust the mass flux if the
obstruction or vent dimensions are changed to conform to the numerical grid. The IDs have no meaning
other than as identifiers. The surface on which particles are specified must have a non-zero normal velocity
directed into the computational domain. This happens automatically if the surface is burning, but must be
specified if it is not. There is a simple input file called particle_flux.fds that demonstrates how the
above input lines can produce a stream of particles from a block. The total mass flux from the block is the
product of the PARTICLE_MASS_FLUX times the total area of the sides of the block, 0.4 m × 0.4 m × 4.
The expected accumulated mass of particles on the ground after 10 s is expected to be 0.64 kg, as shown in
Fig. 15.7.
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Figure 15.7: Simple test case to demonstrate mass conservation of particles ejected from an obstruction.
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Note also that you can independently control particles that emanate from a solid surface. For example,
a device might control the activation of a fan, but you can over-ride the device and control the particles
separately. To do this, specify either a device or controller via a DEVC_ID or CTRL_ID on the PART line that
defines the particles. For more information on devices and controls, see Sections 16.4 and 16.5.

15.5.2 Particles or Droplets Introduced at a Sprinkler or Nozzle

A sprinkler or nozzle is added to the simulation using a PROP line to describe the features of the device and
a DEVC line to position and orient the device within the computational domain. PARTICLES_PER_SECOND
is the number of droplets inserted every second per active sprinkler or nozzle (Default 5000). It is listed on
the PROP line that includes other properties of the sprinkler or nozzle. Note that this parameter only affects
sprinklers and nozzles. Changing this parameter does not change the flow rate, but rather the number of
droplets used to represent the flow.

Note that PARTICLES_PER_SECOND can be a very important parameter. In some simulations, it is a
good idea to increase this number so that the liquid mass is distributed more uniformly over the droplets. If
this parameter is too small, it can lead to a non-physical evaporation pattern, sometimes even to the point
of causing a numerical instability. If you encounter a numerical instability shortly after the activation of
a sprinkler or nozzle, consider increasing PARTICLES_PER_SECOND to produce a smoother evaporation
pattern that is more realistic. Keep in mind that for a real sprinkler or nozzle, there are many more droplets
created per second than the number that can be simulated.

Note that by default the parameter PARTICLE_CFL is set to .FALSE. (see Section 6.4.9). Thus, particles
inserted with a velocity faster than the local fluid entrainment velocity may traverse more than one cell. If
the particles represent a fuel spray or sprinkler droplets that are to be collected in a pan, it may be necessary
to set PARTICLE_CFL=.TRUE. on MISC to precisely account for particle mass. For example, the particles
may represent liquid fuel being sprayed into a pan burner made from a zero thickness obstruction. In this
case, if the particle position overshoots the cell face representing the boundary of the pan then either spurious
burning of the particle will occur underneath the pan or, if the particle does not burn, the heat release rate
will be diminished.

15.5.3 Particles or Droplets Introduced within a Volume

Sometimes it is convenient to introduce Lagrangian particles within a particular region of the domain. To
do this, use an INIT line which contains the PART_ID for the type of particle to be inserted. Particles
specified via an INIT line can represent a number of different kinds of subgrid-scale objects. The parti-
cles can be massless tracers or they can be solid or liquid particles with mass. If not massless, specify
MASS_PER_VOLUME in units of kg/m3. Do not confuse this parameter with DENSITY, explained in the next
section. For example, water has a DENSITY of 1000 kg/m3, whereas a liter of water broken up into droplets
and spread over a cubic meter has a MASS_PER_VOLUME of 1 kg/m3. The number of Lagrangian particles
inserted is controlled by the parameter N_PARTICLES.

Randomly Distributed Particles within a Specified Volume

The parameter N_PARTICLES on the INIT line indicates the number of particles to insert within a specified
region of the domain. This region can take on a number of shapes, depending on the parameter SHAPE.
By default, the region is a rectangular solid designated with the real sextuplet XB. The format for XB is
the same as that used on the OBST line. Alternatively, you can specify SHAPE=’CONE’, in which case the
particles will be randomly distributed within a vertical cone. This is primarily used for representing trees.
The dimensions of the cone are specified via the parameters RADIUS, HEIGHT, and base position XYZ. The
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latter is a triplet of real numbers designating the point at the center of the base of the cone. Examples of
typical INIT lines are:

&INIT PART_ID='droplets', XB=..., N_PARTICLES=..., MASS_PER_VOLUME=... /
&INIT PART_ID='leaves', XYZ=..., RADIUS=..., HEIGHT=..., SHAPE='CONE',

N_PARTICLES=..., MASS_PER_VOLUME=... /

Note that the volume of the specified region is calculated according to the SHAPE dimensions, regardless
of whether there are solid obstructions within this region. Note also that in most applications, the number
of particles, N_PARTICLES, is somewhat arbitrary but should be chosen to provide at least a few particles
per grid cell. FDS will then automatically assign a weighting factor to each particle to ensure that the
MASS_PER_VOLUME is achieved. In some applications, on the other hand, it may be important to specify the
number of particles. For example, if using particles to model the burning of electrical cables, you may want
to specify how many cables are actually burning.

If the volume specified by the sextuplet XB crosses mesh boundaries, be aware that N_PARTICLES
refers to the entire volume, not just the volume within a particular mesh. FDS will automatically compute
the necessary number of particles to assign to each mesh.

Specifying a Fixed Number of Particles per Grid Cell

There are special applications where you might want to specify N_PARTICLES_PER_CELL to indicate the
number of particles within each grid cell of a specified region. When using N_PARTICLES_PER_CELL, the
particles will be randomly placed within each cell. If you set CELL_CENTERED=.TRUE., the particles will
be placed at the center of each cell.

Specifying a Weight Factor for Particles

Use PARTICLE_WEIGHT_FACTOR to specify how many actual particles each of the computational particles
represent. This can be used in conjunction with N_PARTICLES_PER_CELL to reduce the computational
cost when a large number of identical particles would be placed in the same grid cell.

Single Particle Insertion

If you introduce only a single particle, which is often a handy way of creating a target, you may use the
real triplet XYZ rather than XB to designate the particle’s position. You can give this single particle an initial
velocity using the real triplet UVW. You can also add DX, DY, and/or DZ to create a line of particles that are
offset from XYZ by these increments in units of meters. For example,

&INIT PART_ID='target', XYZ=1.2,3.4,5.6, N_PARTICLES=10, DX=0.1 /

creates a line of 10 particles starting at the point (1.2,3.4,5.6) separated by 0.1 m. This is handy for creating
arrays of devices, like heat flux gauges. See Section 17.10.5 for more details.

In special cases, you might want a single liquid droplet to be inserted at a particular point with a partic-
ular velocity every DT_INSERT s following the activation of a particular device, as follows:

&INIT N_PARTICLES=1, XYZ=..., UVW=..., DIAMETER=200., DT_INSERT=0.05,
PART_ID='drops', DEVC_ID='nozzle' /

Note that the DIAMETER (µm) on the INIT line is only valid for liquid droplets. It over-rides the DIAMETER
on the PART line labelled ’drops’. A simple test case that demonstrates this functionality is called
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bucket_test_3, in which water droplets are launched in different directions from a common point. Their
size, velocity, insertion frequency, and mass flux are varied, and a check is made that water mass is conserved
(see Fig. 15.8).
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Figure 15.8: Accumulated water collected at the floor in the bucket_test_3 case.

Periodic Insertion of Particles within a Specified Volume

If you want to introduce particles within a given region periodically in time and not just initially, set
DT_INSERT on the INIT line to a positive value indicating the time increment (s) for insertion. The pa-
rameter N_PARTICLES now indicates the number of droplets/particles inserted every DT_INSERT seconds.
If the droplets/particles have mass, use MASS_PER_TIME (kg/s) instead of MASS_PER_VOLUME to indicate
how much mass is to be introduced per second.

If you want to delay the insertion of droplets, you can use either a DEVC_ID or a CTRL_ID on the INIT
line to name the controlling device. See Section 16.4 for more information on controlling devices.

15.6 Special Topic: Suppression by Water

Modeling fire suppression by water has three principal components: transporting the water droplets through
the air, tracking the water along the solid surface, and predicting the reduction of the burning rate. This
section addresses the latter two.

15.6.1 Velocity on Solid Surfaces

When a droplet strikes a solid surface4, it sticks and is reassigned a new speed and direction. If the sur-
face is horizontal, the direction is randomly chosen. If vertical, the direction is downwards. The rate at
which the droplets move over the horizontal and vertical surfaces is difficult to quantify. The parameters
HORIZONTAL_VELOCITY and VERTICAL_VELOCITY on the PART line allow you to control the rate at
which droplets move horizontally or vertically (downward). The defaults are 0.2 m/s and 0.5 m/s, respec-
tively.

4If you do not want droplets to accumulate on solid surfaces, set ALLOW_SURFACE_PARTICLES=.FALSE. on the
MISC line. It is normally .TRUE.
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There are some applications, like the suppression of racked storage commodities, where it is useful to
allow water droplets to move horizontally along the underside of a solid object. It is difficult to model this
phenomenon precisely because it involves surface tension, surface porosity and absorption, and complicated
geometry. However, a way to capture some of the effect is to set ALLOW_UNDERSIDE_PARTICLES=.TRUE.
on the MISC line. It is normally false. Also, note that when droplets hit obstructions, the vertical direction
is assumed to coincide with the z axis, regardless of any change to the gravity vector, GVEC.

A useful sample case to demonstrate various features of droplet motion on solid obstructions is the test
case called cascade.fds. Figure 15.9 shows a stream of water droplets impinging on the top of a box
followed by the cascading of water droplets over the top edge.

Figure 15.9: Smokeview rendering of the cascade test case.

15.6.2 Reduction of the Burning Rate

Water reduces the fuel pyrolysis rate by cooling the fuel surface and also changing the chemical reactions
that liberate fuel gases from the solid. If the solid or liquid fuel has been given reaction parameters via the
MATL line, there is no need to set any additional suppression parameters. It is assumed that water impinging
on the fuel surface takes energy away from the pyrolysis process and thereby reduces the burning rate of the
fuel. If the surface has been assigned a HRRPUA (Heat Release Rate Per Unit Area), a parameter needs to be
specified that governs the suppression of the fire by water because this type of simulated fire essentially acts
like a gas burner whose flow rate is explicitly specified. An empirical way to account for fire suppression
by water is to characterize the reduction of the pyrolysis rate in terms of an exponential function. The local
mass loss rate of the fuel is expressed in the form

ṁ′′f (t) = ṁ′′f,0(t) e−
∫

k(t) dt (15.8)

Here ṁ′′f,0(t) is the user-specified burning rate per unit area when no water is applied and k is a function of
the local water mass per unit area, m′′w, expressed in units of kg/m2.

k(t) = E_COEFFICIENT m′′w(t) 1/s (15.9)
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The parameter E_COEFFICIENT must be obtained experimentally, and it is expressed in units of m2/(kg · s).
Usually, this type of suppression algorithm is invoked when the fuel is complicated, like a cartoned com-
modity. The example case e_coefficient demonstrates the use of this parameter. A sprinkler is placed
over a burner defined with an E_COEFFICIENT as shown below. The sprinkler is set to operate at 5 s.
Figure 15.10 shows the heat release rate and burning rate. Note that expected value is computed using the
sprinkler flow rate and the FDS results are delayed slightly by the time it takes for droplets to reach and
accumulate on the burning surface.

&SURF ID='FUEL', HRRPUA=100., E_COEFFICIENT=4. /
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Figure 15.10: Output of the e_coefficient test case.
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Chapter 16

Devices and Control Logic

Sprinklers, smoke detectors, heat flux gauges, and thermocouples may seem to be completely unrelated,
but from the point of view of FDS, they are simply devices that operate in specific ways depending on the
properties assigned to them. They can be used to record some quantity of the simulated environment, like a
thermocouple, or they can represent a mathematical model of a complex sensor, like a smoke detector, and
in some cases they can trigger events to happen, like a timer.

All devices, in the broadest sense of the word, are designated via the namelist group DEVC. In addi-
tion, advanced functionality and properties are accommodated via additional namelist groups called CTRL

(Control) and PROP (Properties).

16.1 Device Location and Orientation: The DEVC Namelist Group (Table
18.5)

Regardless of the specific properties, each device needs to be sited either at a point within the computational
domain, or over a span of the domain, like a beam smoke detector. For example, a sprinkler is sited within
the domain with a line like:

&DEVC XYZ=3.0,5.6,2.3, PROP_ID='Acme Sprinkler 123', ID='Spk_39' /

The physical coordinates of the device are given by a triplet of real numbers, XYZ. FDS uses these coordi-
nates to determine in which gas or wall cell the device is located. The properties of the device are contained
on the PROP line designated by PROP_ID, which will be explained below for each of the special devices
included in FDS. The character string ID is merely a descriptor to identify the device in the output files, and
if any action is tied to its activation.

Not all devices need to be associated with a particular set of properties via the PROP_ID. For example,
pointwise output quantities are specified with a single DEVC line, like

&DEVC ID='TC-23', XYZ=3.0,5.6,2.3, QUANTITY='TEMPERATURE' /

which tells FDS to record the temperature at the given point as a function of time. The ID is a label in the
output file whose name is CHID_devc.csv. Note that FDS outputs the data stored for that cell without
performing any interpolation with surrounding cells.

Some devices have a particular orientation. The parameter IOR (Index of Orientation) is required for
any device that is placed on the surface of a solid. The values ±1 or ±2 or ±3 indicate the direction that
the device “points.” For example, IOR=-1 means that the device is mounted on a wall that faces in the
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negative x direction. ORIENTATION is used for devices that are not on a surface and require a directional
specification, like a sprinkler. ORIENTATION is specified with a triplet of real number values that indicate
the components of the direction vector. The default value of ORIENTATION is (0,0,-1). For example, a
default downward-directed sprinkler spray can be redirected in other direction. If you were to specify

&DEVC XYZ=3.0,5.6,2.3, PROP_ID='...', ID='...', ORIENTATION=0.707,0.707,0.0 /

the sprinkler would point in the direction halfway between the positive x and y directions. For other devices,
the ORIENTATION would only change the way the device is drawn by Smokeview.

The delivered density to the floor from a sprinkler depends upon where the sprinkler arms are located.
Rather than redefining the spray pattern for every possible direction that the sprinkler can be attached to
the pipe, the DEVC can be given the parameter ROTATION. The default ROTATION is 0 degrees, which for
a downwards pointing sprinkler is the positive x-axis. Positive ROTATION will rotate the 0 degree point
towards the positive y-axis.

16.2 Device Output

Each device has a QUANTITY associated with it. The time history of each DEVC quantity is output to a
comma-delimited ASCII file called CHID_devc.csv (see Section 21.3 for output file format). This file
can be imported into most spreadsheet software packages. Most spreadsheet programs limit the number
of columns to some number (for example the 2003 version Microsoft Excel had a 256 column limit).
As a default, FDS places no limit on the amount of columns in a comma-separated value (.csv) file.
If your spreadsheet application allows fewer columns than the number of DEVC or CTRL in your input
file then set COLUMN_DUMP_LIMIT equal to .TRUE. on the DUMP line. Use DEVC_COLUMN_LIMIT and
CTRL_COLUMN_LIMIT to indicate the limit of columns in the device and control output files. Their default
values are 254.

By default, the DEVC output is written to a file every DT_DEVC seconds. This time increment is specified
on the DUMP line. Also, by default, a time-averaged value is written out for each quantity of interest. To
prevent FDS from time-averaging the DEVC output, add TIME_AVERAGED=.FALSE. to the DEVC line.

A useful option for the DEVC line is to add RELATIVE=.TRUE., which will indicate that only the change
in the initial value of the QUANTITY is to be output. This can be useful for verification and validation studies.

You can change the values of the output QUANTITY by multiplying by CONVERSION_FACTOR and
changing the character string UNITS. You can also change the scaling of the coordinates by applying a
COORD_FACTOR. This is handy for plotting nondimensional distance, for example.

If you do not want the DEVC QUANTITY to be included in the output file, set OUTPUT=.FALSE. on the
DEVC line. Sometimes, devices are just used as clocks or control devices. In these cases, you might want
to prevent its output from cluttering the output file. If the DEVC QUANTITY=’TIME’, then OUTPUT is set to
.FALSE. automatically.

All devices must have a specified QUANTITY. Some special devices (Section 16.3) have their QUANTITY
specified on a PROP line. A QUANTITY specified on a PROP line associated with a DEVC line will override a
QUANTITY specified on the DEVC line.
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16.3 Special Device Properties: The PROP Namelist Group (Table 18.20)

Many devices are fairly easy to describe, like a point measurement, with only a few parameters which can
be included on the DEVC line. However, for more complicated devices, it is inconvenient to list all of the
properties on each and every DEVC line. For example, a simulation might include hundreds of sprinklers,
but it is tedious to list the properties of the sprinkler each time the sprinkler is sited. For these devices, use
a separate namelist group called PROP to store the relevant parameters. Each PROP line is identified by a
unique ID, and invoked by a DEVC line by the string PROP_ID. The best way to describe the PROP group is
to list the various special devices and their properties.

16.3.1 Sprinklers

Here is a very simple example of a sprinkler:

&PROP ID='K-11', QUANTITY='SPRINKLER LINK TEMPERATURE', RTI=148., C_FACTOR=0.7,
ACTIVATION_TEMPERATURE=74., OFFSET=0.10,PART_ID='water drops', FLOW_RATE=189.3,
PARTICLE_VELOCITY=10., SPRAY_ANGLE=30.,80. /

&DEVC ID='Spr_60', XYZ=22.88,19.76,7.46, PROP_ID='K-11' /

A sprinkler, known as ’Spr_60’, is located at a point in space given by XYZ. It is a ’K-11’ type sprinkler,
whose properties are given on the PROP line. Note that the various names (IDs) mean nothing to FDS,
except as a means of associating one thing with another, so try to use IDs that are meaningful. The pa-
rameter QUANTITY=’SPRINKLER LINK TEMPERATURE’ does have a specific meaning to FDS, directing
it to compute the activation of the device using the standard RTI (Response Time Index [36]) algorithm.
Properties associated with sprinklers included in the PROP group are:

RTI Response Time Index in units of (m·s)1/2. (Default 100.)

C_FACTOR Conduction Factor in units of (m/s)1/2. (Default 0.)

ACTIVATION_TEMPERATURE in units of ◦C. (Default 74 ◦C)

INITIAL_TEMPERATURE of the link in units of ◦C. (Default TMPA)

FLOW_RATE or MASS_FLOW_RATE in units of L/min or kg/s. An alternative is to provide the K_FACTOR

in units of L/(min ·bar
1
2 ) and the OPERATING_PRESSURE, the gauge pressure at the sprinkler, in units

of bar. The flow rate is then given by K
√

p. Note that 1 bar is equivalent to 14.5 psi, 1 gpm is equiv-
alent to 3.785 L/min, 1 gpm/psi

1
2 is equivalent to 14.41 L/min/bar

1
2 . If MASS_FLOW_RATE is given

then PARTICLE_VELOCITY must also be defined. Note that FLOW_RATE is only appropriate for liquid
droplets; solid particles should use MASS_FLOW_RATE

OFFSET Radius (m) of a sphere surrounding the sprinkler where the water droplets are initially placed in
the simulation. It is assumed that beyond the OFFSET the droplets have completely broken up and are
transported independently of each other. (Default 0.05 m)

PARTICLE_VELOCITY Initial droplet velocity. (Default 0 m/s)

ORIFICE_DIAMETER Diameter of the nozzle orifice in m (default 0 m). This input provides an alterna-
tive way to set droplet velocity by giving values for FLOW_RATE and ORIFICE_DIAMETER, in which
case the droplet velocity is computed by dividing the flow rate by the orifice area. Use this method if
you do not have any information about droplet velocity. However, quite often you must fine-tune the
PARTICLE_VELOCITY in order to reproduce a particular spray profile. The ORIFICE_DIAMETER is not
used if either PARTICLE_VELOCITY or SPRAY_PATTERN_TABLE is specified.
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SPRAY_ANGLE A pair of angles (in degrees) through which the droplets are sprayed. The angles out-
line a conical spray pattern relative to the south pole of the sphere centered at the sprinkler with ra-
dius OFFSET. For example, SPRAY_ANGLE=30.,80. directs the water droplets to leave the sprin-
kler through a band between 60◦ and 10◦ south latitude, assuming the orientation of the sprinkler is
(0,0,-1), the default. Elliptical spray patterns can be defined by giving a pair of spray angles. For
example, SPRAY_ANGLE(1,1:2)=0.,60. and SPRAY_ANGLE(2,1:2)=0.,30., defines a spray
pattern with 60 degree angle in the direction of x axis and a 30 degree angle in the direction of
y axis. SPRAY_PATTERN_SHAPE determines how the droplets are distributed within the specified
SPRAY_ANGLE. Choices are ’UNIFORM’ for uniform distribution and ’GAUSSIAN’. The default dis-
tribution is ’GAUSSIAN’. The parameter SPRAY_PATTERN_MU controls the latitude of the maximum
density of droplets for the ’GAUSSIAN’ distribution. The width of the distribution is controlled by the
parameter SPRAY_PATTERN_BETA.

SPRAY_PATTERN_TABLE Name of a set of TABL lines containing the description of the spray pattern.

PART_ID The name of the PART line containing properties of the droplets. See Chapter 15 for additional
details.

PRESSURE_RAMP The name of the RAMP lines specifying the dependence of pipe pressure on the number
of active sprinklers and nozzles.

Be aware that sprinklers can produce many droplets. To limit the computational cost, liquid droplets disap-
pear when they hit the “floor” of the computational domain, regardless of whether it is solid or not. This
feature mimics the presence of floor drains. To stop FDS from removing liquid droplets from the floor of the
domain, add the phrase POROUS_FLOOR=.FALSE. to the MISC line. Be aware, however, that droplets that
land on the floor continue to move horizontally in randomly selected directions; bouncing off obstructions,
and consuming CPU time. Note also that solid particles do not disappear from the floor the domain like
liquid droplets.

For more information about sprinklers, their activation and spray dynamics, read the FDS Technical
Reference Guide [1].

Special Topic: Specifying Complex Spray Patterns

As an example of the more advanced sprinkler options, a sprinkler with an elliptical spray pattern and
uniform mass flux distribution within the spray angle is given by:

&PROP ID='K-11', QUANTITY='SPRINKLER LINK TEMPERATURE', RTI=148., C_FACTOR=0.7,
ACTIVATION_TEMPERATURE=74., OFFSET=0.10,PART_ID='water drops', FLOW_RATE=189.3,
PARTICLE_VELOCITY=10., SPRAY_ANGLE(1:2,1)=0.,60.,SPRAY_ANGLE(1:2,2) = 0.,30.,
SPRAY_PATTERN_SHAPE='UNIFORM' /

&DEVC ID='Spr_60', XYZ=22.88,19.76,7.46, PROP_ID='K-11' /

For full-cone sprays, the parameter SPRAY_PATTERN_MU is set to zero by default. For hollow-cone sprays
it is set to the average of SPRAY_ANGLE(1:2,1), the spray angle in x direction. The following example
uses SPRAY_PATTERN_MU to define a spray that is somewhere between full-cone and hollow-cone spray:

&PROP ID='K-11', QUANTITY='SPRINKLER LINK TEMPERATURE', RTI=148., C_FACTOR=0.7,
ACTIVATION_TEMPERATURE=74., OFFSET=0.10,PART_ID='water drops', FLOW_RATE=189.3,
PARTICLE_VELOCITY=10., SPRAY_ANGLE=0.,30. ,SPRAY_PATTERN_MU=15./

&DEVC ID='Spr_60', XYZ=22.88,19.76,7.46, PROP_ID='K-11' /
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If a more complex spray pattern is desired than one characterized by a SPRAY_ANGLE, then a
SPRAY_PATTERN_TABLE can be specified using the TABL namelist group. Specify the total flow using
FLOW_RATE on the PROP line, the name of the spray pattern using SPRAY_PATTERN_TABLE and then one
or more TABL lines of the form:

&TABL ID='table_id', TABLE_DATA=LAT1,LAT2,LON1,LON2,VELO,FRAC /

where each TABL line for a given ’table_id’ provides information about the spherical distribution of the
spray pattern for a specified solid angle. LAT1 and LAT2 are the bounds of the solid angle measured in
degrees from the south pole (0 is the south pole and 90 is the equator, 180 is the north pole). Note that this
is not the conventional way of specifying a latitude, but rather a convenient system based on the fact that
a typical sprinkler sprays water downwards, which is why 0 degrees is assigned to the “south pole,” or the
−z direction. The parameters LON1 and LON2 are the bounds of the solid angle (also in degrees), where 0
(or 360) is aligned with the −x axis and 90 is aligned with the −y axis. VELO is the velocity (m/s) of the
droplets at their point of insertion. FRAC the fraction of the total flow rate of liquid that should emerge from
that particular solid angle.

In the test case called bucket_test_2, the spray pattern is defined as two jets, each with a velocity of
5 m/s and a total flow rate of 60 L/min. The sprinkler is set to operate for only 5 s. The first jet contains 0.2
of the total flow, the second, 0.8 of the total. The jets are centered at points 30◦ below the “equator,” and are
separated by 180◦.

&PROP ID='K-11', QUANTITY='SPRINKLER LINK TEMPERATURE', OFFSET=0.10,
PART_ID='water_drops', FLOW_RATE=60., SPRAY_PATTERN_TABLE='TABLE1',
SMOKEVIEW_ID='sprinkler_upright', PARTICLE_VELOCITY=10. /

&TABL ID='TABLE1',TABLE_DATA=30,31,0,1,5,0.2/
&TABL ID='TABLE1',TABLE_DATA=30,31,179,180,5,0.8/

Note that each set of TABL lines must have a unique ID. Also note that the TABL lines can be specified in
any order. Figure 16.1 verifies that the sprinkler releases 5 kg of water (1 kg/s for 5 s).
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Figure 16.1: Accumulated water collected at the floor in the bucket_test_2 case.

Special Topic: Varying Pipe Pressure

In real sprinkler systems, the pipe pressure is affected by the number of actuated sprinklers. Typically,
the pressure is higher than the design value when the first sprinkler activates, and decreases as more and
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more sprinklers are activated. The pipe pressure has an effect on flow rate, droplet velocity and droplet size
distribution. In FDS, the varying pipe pressure can be specified on a PROP line using PRESSURE_RAMP. On
each RAMP line, the number of open sprinklers or nozzles is associated with certain pipe pressure (bar). For
example:

&PROP ID='My nozzle'
OFFSET=0.1
PART_ID='water drops'
FLOW_RATE=0.9
OPERATING_PRESSURE = 10.0
PARTICLE_VELOCITY=15.0
SPRAY_ANGLE=0.0,80.0
PRESSURE_RAMP = 'PR1' /

&RAMP ID = 'PR1' T = 1, F = 16. /
&RAMP ID = 'PR1' T = 2, F = 10. /
&RAMP ID = 'PR1' T = 3, F = 8. /

These lines would indicate that the pressure is 16 bar when the first sprinkler activates, 10 bar when two
sprinklers are active, and 8 bar when three or more sprinklers are active. When counting the number of
active sprinklers, FDS accounts for all active sprinklers or nozzles with a given PART_ID.

When pressure ramps are used, both FLOW_RATE and PARTICLE_VELOCITY are dependent on the
OPERATING_PRESSURE. Specify either the FLOW_RATE, or the K_FACTOR and OPERATING_PRESSURE. In
the latter case, the flow rate is given by K

√
p and the droplet velocity by using the liquid density and the

ORIFICE_DIAMETER. If spray pattern table is used, the droplet velocity is determined separately for each
line of the table by applying K

√
p and the ORIFICE_DIAMETER. The median diameter of the particle size

distribution is scaled as dm(p) = dm(po)(po/p)1/3, where po is the OPERATING_PRESSURE and dm(po) is
specified by parameter DIAMETER on the corresponding PART line.

For some simulations there may be groups of independent sprinklers or nozzles. For example one might
have one set of nozzles for a fuel spray and a second set for water spray. In this case the flow of water
would not be impacted by how many fuel spray nozzles are open. To have the PRESSURE_RAMP only count
a subset of sprinklers or nozzles, the keyword PIPE_INDEX can be used on the DEVC line. For example:

&DEVC ID='Spr_1', XYZ=2.00,2.00,8.00, PROP_ID='My nozzle', PIPE_INDEX=1 /
&DEVC ID='Spr_2', XYZ=1.00,1.00,8.00, PROP_ID='My nozzle', PIPE_INDEX=1 /
&DEVC ID='Fuel_1', XYZ=2.00,2.00,1.00, PROP_ID='Fuel Spray', PIPE_INDEX=2 /
&DEVC ID='Fuel_2', XYZ=1.00,1.00,1.00, PROP_ID='Fuel Spray', PIPE_INDEX=2 /

These lines indicate that the fuel spray nozzles are a separate pipe network from the water sprinklers. With
these inputs, a PRESSURE_RAMP for the water sprinklers would not count any active fuel spray nozzles. See
the example case flow_rate_2 in the Verification Guide for further details on the use of PIPE_INDEX.

16.3.2 Nozzles

Nozzles are very much like sprinklers, only they do not activate based on the standard RTI (Response Time
Index) model. To simulate a nozzle that activates at a given time, specify a QUANTITY and SETPOINT

directly on the DEVC line. The following lines:

&DEVC XYZ=23.91,21.28,0.50, PROP_ID='nozzle', ORIENTATION=0,0,1, QUANTITY='TIME',
SETPOINT=0., ID='noz_1' /

&DEVC XYZ=26.91,21.28,0.50, PROP_ID='nozzle', ORIENTATION=0,0,1, QUANTITY='TIME',
SETPOINT=5., ID='noz_2' /
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&PROP ID='nozzle', PART_ID='heptane drops', FLOW_RATE=2.132,
FLOW_TAU=-50., PARTICLE_VELOCITY=5., SPRAY_ANGLE=0.,45. /

designate two nozzles of the same type, one which activates at time zero, the other at 5 s. Note that nozzles
must have a designated PROP_ID, and the PROP line must have a designated PART_ID to describe the liquid
droplets.

Example Case: Setting the Flow Rate of a Nozzle

This example demonstrates the use of pressure ramps and control logic for opening and closing nozzles. It
also serves as a verification test for the water flow rate. There are four nozzles that open at designated times:
0 s, 15 s, 30 s and 45 s. At time 60 s, all the nozzles are closed. The number of open nozzles is measured
using a device with quantity ’OPEN NOZZLES’. A comparison of the FDS result and the exact, intended
values is shown in Fig. 16.2. Note that ’OPEN NOZZLES’ counts only nozzles belonging to the specified
PIPE_INDEX. The pressure ramp has been designed to deliver a total flow rate of 10 L/min at all values of
open nozzles. Mathematically this means that

nK
√

p = 10 L/min ⇒ p =

(
10 L/min

nK

)2

(16.1)

where n is the number of open nozzles. The corresponding nozzle and pressure ramp definitions are

&PROP ID='Head', OFFSET=0.10, PART_ID='water drops', K_FACTOR=2.5,
OPERATING_PRESSURE=1.,

PRESSURE_RAMP='PR', PARTICLE_VELOCITY=2., SPRAY_ANGLE= 0.,60. /

&RAMP ID='PR', T= 1., F=16. /
&RAMP ID='PR', T= 2., F=4. /
&RAMP ID='PR', T= 3., F=1.778 /
&RAMP ID='PR', T= 4., F=1. /

The water is tracked using a device measuring the accumulated mass per unit area, integrated over the total
floor area. The total mass of water should increase from zero to 10 kg in 60 s. A comparison of the FDS
prediction and this analytical result is shown in Fig. 16.2. The slight delay of the FDS result is caused by
the time it takes from the droplets to fall down on the floor.
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Figure 16.2: Output of the flow_rate test case.
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16.3.3 Special Topic: Specified Entrainment (Velocity Patch)

The details of the sprinkler head geometry and spray atomization are practically impossible to resolve in a
fire calculation. As a result, the local gas phase entrainment by the sprinkler is difficult to predict. As an
alternative, it is possible to specify the local gas velocity in the vicinity of the sprinkler nozzle. The PROP
line may be used to specify a polynomial function for a specific velocity component and this function may
be “patched” into the flow field using a device. This device is given the quantity ’VELOCITY PATCH’ and
is initially inactive. The velocity patch must be activated with a separate control device, as discussed in
Section 16.4. You specify the local region for the velocity patch using XB for the device. The polynomial
is defined as a second-order Taylor expansion about the point XYZ (the default value of XYZ is the center
of XB). FDS then uses an immersed boundary method to force the local velocity component to satisfy the
polynomial. The polynomial is specified by the coefficients P0, PX(1:3), and PXX(1:3,1:3), which repre-
sent, respectively, the value of the kth velocity component, the first derivatives, and the second derivatives at
point XYZ. Note that the first derivatives are represented by a three component array and the second deriva-
tives are represented by a symmetric 3×3 array—only the upper triangular part needs to be specified. The
polynomial is given by (note that summation of repeated indices is implied):

uk(r) = (uk)0︸︷︷︸
P0

+ ri

(
∂uk

∂xi

)
0︸ ︷︷ ︸

PX(1:3)

+
rir j

2

(
∂ 2uk

∂xi∂x j

)
0︸ ︷︷ ︸

PXX(1:3,1:3)

(16.2)

The vector r is the position of the velocity storage location relative to the point XYZ. The specific velocity
component is specified on PROP by the integer VELOCITY_COMPONENT. Below we provide an example set
of PROP and DEVC lines to specify a parabolic profile for the vertical component of velocity.

&PROP ID='p1', VELOCITY_COMPONENT=3, P0=-1,PXX(1,1)=5,PXX(2,2)=5 /
&DEVC XB=-.1,.1,-.1,.1,.9,.95, QUANTITY='VELOCITY PATCH',PROP_ID='p1', DEVC_ID='t1'/
&DEVC ID='t1', XYZ=0,0,.9, QUANTITY='TIME', SETPOINT=10/

In this example, a velocity patch is activated at 10 s in the simulation. Any w components of velocity with
staggered storage locations within the box XB=-.1,.1,-.1,.1,.9,.95 will be driven toward the value
specified by the polynomial profile ’p1’. You must ensure that the device box encompasses the staggered
storage locations (see the theory manual [1] for a discussion on the face-centered velocity storage locations).

16.3.4 Heat Detectors

QUANTITY=’LINK TEMPERATURE’ defines a heat detector, which uses essentially the same activation al-
gorithm as a sprinkler, without the water spray.

&DEVC ID='HD_66', PROP_ID='Acme Heat', XYZ=2.3,4.6,3.4 /
&PROP ID='Acme Heat', QUANTITY='LINK TEMPERATURE', RTI=132.,

ACTIVATION_TEMPERATURE=74. /

Like a sprinkler, RTI is the Response Time Index in units of
√

m · s. ACTIVATION_TEMPERATURE is the
link activation temperature in degrees C (Default 74 ◦C). INITIAL_TEMPERATURE is the initial temperature
of the link in units of ◦C (Default TMPA).

16.3.5 Smoke Detectors

A smoke detector is defined in the input file with an entry similar to:
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&DEVC ID='SD_29', PROP_ID='Acme Smoke Detector', XYZ=2.3,4.6,3.4 /
&PROP ID='Acme Smoke Detector', QUANTITY='CHAMBER OBSCURATION', LENGTH=1.8,

ACTIVATION_OBSCURATION=3.24 /

for the single parameter Heskestad model. Note that a PROP line is mandatory for a smoke detector, in which
case the DEVC QUANTITY can be specified on the PROP line. For the four parameter Cleary model, use a
PROP line like:

&PROP ID='Acme Smoke Detector I2', QUANTITY='CHAMBER OBSCURATION',
ALPHA_E=1.8, BETA_E=-1.1, ALPHA_C=1.0, BETA_C=-0.8,
ACTIVATION_OBSCURATION=3.24 /

where the two characteristic filling or “lag” times are of the form:

δ te = αeuβe ; δ tc = αcuβc (16.3)

The default detector parameters are for the Heskestad model with a characteristic LENGTH of 1.8 m. For
the Cleary model, the ALPHAs and BETAs must all be listed explicitly. Suggested constants for unidentified
ionization and photoelectric detectors presented in Table 16.1. ACTIVATION_OBSCURATION is the thresh-
old value in units of %/m. The threshold can be set according to the setting commonly provided by the
manufacturer. The default setting1 is 3.24 %/m (1 %/ft).

Table 16.1: Suggested values for smoke detector model [37]. See Ref. [28] for others.

Detector αe βe αc, L βc

Cleary Ionization I1 2.5 -0.7 0.8 -0.9
Cleary Ionization I2 1.8 -1.1 1.0 -0.8
Cleary Photoelectric P1 1.8 -1.0 1.0 -0.8
Cleary Photoelectric P2 1.8 -0.8 0.8 -0.8
Heskestad Ionization — — 1.8 —

Defining Smoke

By default, FDS assumes that the smoke from a fire is generated in direct proportion to the heat release
rate. A value of SOOT_YIELD=0.01 on the REAC line means that the smoke generation rate is 0.01 of the
fuel burning rate. The “smoke” in this case is not explicitly tracked by FDS, but rather is assumed to be a
function of the combustion products lumped species.

Suppose, however, that you want to define your own “smoke” and that you want to specify its production
rate independently of the HRR (or even in lieu of an actual fire, like a smoldering source). You might also
want to define a mass extinction coefficient for the smoke and an assumed molecular weight (as it will be
tracked like a gas species). Finally, you also want to visualize the smoke using the SMOKE3D feature in
Smokeview. Use the following lines:

1Note that the conversion of obscuration from units of %/ft to %/m is given by:

O[%/m] =

[
1−
(

1− O[%/ft]
100

)3.28
]
×100 (16.4)
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&SPEC ID='MY SMOKE', MW=29., MASS_EXTINCTION_COEFFICIENT=8700. /
&SURF ID='SMOLDER', TMP_FRONT=1000., MASS_FLUX(1)=0.0001, SPEC_ID='MY SMOKE',

COLOR='RED' /
&VENT XB=0.6,1.0,0.3,0.7,0.0,0.0, SURF_ID='SMOLDER' /

&PROP ID='Acme Smoke', QUANTITY='CHAMBER OBSCURATION', SPEC_ID='MY SMOKE' /
&DEVC XYZ=1.00,0.50,0.95, PROP_ID='Acme Smoke', ID='smoke_1' /

&DUMP SMOKE3D_QUANTITY='MASS FRACTION', SMOKE3D_SPEC_ID='MY SMOKE' /

The same smoke detector model is used that was described above. Only now, the mass fraction of your
species ’MY SMOKE’ is used in the algorithm, rather than that associated with the lumped species. Note that
your species will not participate in the radiation calculation. It will merely serve as a surrogate for smoke.
Note also that if you specify explicitly a smoke surrogate, you should set SOOT_YIELD=0 on the REAC line
to prevent FDS from including smoke as a component of the combustion product lumped species.

16.3.6 Beam Detection Systems

A beam detector can be defined by specifying the endpoints, (x1,y1,z1) and (x2,y2,z2), of the beam
and the total percent obscuration at which the detector activates. The two endpoints must lie in the same
mesh. FDS determines which mesh cells lie along the linear path defined by the two endpoints. The beam
detector response is evaluated as

Obscuration =

(
1− exp

(
−Km

N

∑
i=1

ρs,i ∆xi

))
×100 % (16.5)

where i is a mesh cell along the path of the beam, ρs,i is the soot density of the mesh cell, ∆xi is the distance
within the mesh cell that is traversed by the beam, and Km is the mass extinction coefficient. The line in the
input file has the form:

&DEVC XB=x1,x2,y1,y2,z1,z2, QUANTITY='PATH OBSCURATION', ID='beam1', SETPOINT=33.0 /

A similar QUANTITY is ’TRANSMISSION’ which is given by the following expression:

Transmission = exp

(
−Km

L0

L

N

∑
i=1

ρs,i ∆xi

)
×100 %/m (16.6)

Note that the transmission is given in units of %/m rather than % like obscuration. L is the total path length
of the beam, and L0 is the reference dimension of 1 m.

Since a single linear path cannot span more than one mesh, having a beam detector that crosses multiple
meshes will require post processing. Break the beam detector path into multiple DEVC lines, one for each
mesh that the beam crosses. The total obscuration is given by

O =

[
1−

N

∏
i=1

(1−Oi/100)

]
×100 % (16.7)

where Oi is the FDS output for the beam detector of the ith path (note that the bracketed term contains a
product rather than a sum).
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Example Case: A Beam Detector

A 10 m by 10 m by 4 m compartment is filled with smoke from burning propane, represented as 0.006 kg/kg
of the lumped species variable, PRODUCTS. The soot yield is specified as 0.01 kg/kg, resulting in a uniform
soot density of 71.9 mg/m3. Using the default mass extinction coefficient of 8700 m2/kg, the optical depth is
calculated to be 0.626 1/m. The compartment has a series of obstructions located at increasing distance from
the front in increments of 1 m. The correlation for the output quantity VISIBILITY, Eq. (17.6), produces
a visibility distance of 4.8 m. When viewing the smoke levels with Smokeview, you should just barely
see the fifth obstacle which is at a distance of 5 m from the front of the compartment. If this is the case,
Smokeview is properly displaying the obscuration of the smoke. Three beam detectors are also placed in the
compartment. These all have a path length of 10 m, but are at different orientations within the compartment.
Using the optical depth of 0.626 1/m and the path length of 10 m, the expected total obscuration is 99.81 %,
which is the result computed by FDS for each of the three detectors.

Figure 16.3: Output of the beam_detector test case.

16.3.7 Aspiration Detection Systems

An aspiration detection system groups together a series of smoke measurement devices. An aspiration
system consists of a sampling pipe network that draws air from a series of locations to a central point where
an obscuration measurement is made. To define such a system in FDS, you must provide the sampling
locations, sampling flow rates, the transport time from each sampling location, and if an alarm output is
desired, the overall obscuration “setpoint.” One or more DEVC inputs are used to specify details of the
sampling locations, and one additional input is used to specify the central detector:

&DEVC XYZ=..., QUANTITY='DENSITY', SPEC_ID='SOOT', ID='soot1', DEVC_ID='asp1',
FLOWRATE=0.1, DELAY=20 /

&DEVC XYZ=..., QUANTITY='DENSITY', SPEC_ID='SOOT', ID='soot2', DEVC_ID='asp1',
FLOWRATE=0.2, DELAY=10 /

...
&DEVC XYZ=..., QUANTITY='DENSITY', SPEC_ID='SOOT', ID='sootN', DEVC_ID='asp1',

FLOWRATE=0.3, DELAY=30 /
&DEVC XYZ=..., QUANTITY='ASPIRATION', ID='asp1', BYPASS_FLOWRATE=0.4,

SETPOINT=0.02 /

where the DEVC_ID is used at each sampling point to reference the central detector, FLOWRATE is the gas
flow rate in kg/s, DELAY is the transport time (in seconds) from the sampling location to the central detector,
BYPASS_FLOWRATE is the flow rate in kg/s of any air drawn into the system from outside the computational
domain (accounts for portions of the sampling network lying outside the domain defined by the MESH inputs),
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and SETPOINT is the alarm threshold obscuration in units of %/m. The output of the aspiration system is
computed as

Obscuration =

(
1− exp

(
−Km

∑
N
i=1 ρs,i(t− td,i) ṁi

∑
N
i=1 ṁi

))
×100 %/m (16.8)

where ṁi is the mass FLOWRATE at sampling location i, ρs,i(t− td,i) is the soot density at sampling location i,
td,i s prior (DELAY) to the current time t, and Km is the MASS_EXTINCTION_COEFFICIENT associated with
visible light.

Example Case: aspiration_detector

A cubical compartment, 2 m on a side has a three sampling location aspiration system. The three locations
have equal flow rates of 0.3 kg/s, and transport times of 50, 100, and 150 s, respectively. No bypass flow rate
is specified for the aspiration detector. Combustion products are forced into the bottom of the compartment
at a rate of 1 kg/s. The SOOT_YIELD=0.001. Mass is removed from the top of the compartment at a rate
of 1 kg/s. The aspiration detector shows an increasing obscuration over time. There is a delay of slightly
over 50 s in the initial increase which results from the 50 s transport time for the first sampling location plus
a short period of time to transport the combustion products to the sampling location. The detector response
has three plateaus that result from the delay times of the sampling locations. The sampling points are co-
located, so each plateau represents an additional one third of the soot being transported to the detector. The
soot density at the sampling point is 7.1×10−5 kg/m3. Using this value the plateaus are computed as 18 %,
33.2 %, and 45.7 %, as seen in Fig. 16.4.
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Figure 16.4: Output of aspiration_detector test case.

16.4 Basic Control Logic

Devices can be used to control various actions, like creating and removing obstructions, or activating and
deactivating fans and vents. Every device has an associated QUANTITY, whether it is included directly on
the DEVC line or indirectly on the optional PROP line. Using the DEVC parameter SETPOINT, you can trigger
an action to occur when the QUANTITY value passes above, or below, the given SETPOINT. The following
parameters dictate how a device will control something:
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SETPOINT The value of the device at which its state changes. For a detection type of device (e.g., heat or
smoke) this value is taken from the device’s PROP inputs and need not be specified on the DEVC line.

TRIP_DIRECTION A positive integer means the device will change from its INITIAL_STATE when the
value of the device is greater than the SETPOINT and be equal to the INITIAL_STATE when the
value is less than the SETPOINT. A negative integer has the opposite behavior. The device will change
from its INITIAL_STATE when the value of the device is less than the SETPOINT and be equal to the
INITIAL_STATE when the value is greater than the SETPOINT. The default value is +1.

LATCH If this logical value is set to .TRUE. the device will only change state once. The default value is
.TRUE..

INITIAL_STATE This logical value is the initial state of the device. The default value is .FALSE. For
example, if an obstruction associated with the device is to disappear, set INITIAL_STATE=.TRUE.

If you desire to control FDS using more complex logic than can be provided by the use of a single device
and its setpoint, control functions can be specified using the CTRL input. See Section 16.5 for more on CTRL
functions. The simplest example of a device is just a timer:

&DEVC XYZ=1.2,3.4,5.6, ID='my clock', QUANTITY='TIME', SETPOINT=30. /

Anything associated with the device via the parameter, DEVC_ID=’my clock’, will change its state at 30 s.
For example, if the text were added to an OBST line, that obstruction would change from its INITIAL_STATE
of .FALSE. to .TRUE. after 30 s. In other words, it would be created at 30 s instead of at the start of the
simulation. This is a simple way to open a door or window.

When using a DEVC output to control FDS, the instantaneous value of the DEVC is used. For some
QUANTITY types, such as TEMPERATURE, this output can be very noisy. To prevent a spurious spike from
causing a state change of the DEVC you can specify the parameter SMOOTHING_FACTOR. This is a parameter
that can vary between 0 and 1. It performs an exponential smoothing of the DEVC output as follows:

x̄n = x̄n−1 SMOOTHING_FACTOR+ xn (1−SMOOTHING_FACTOR) (16.9)

where n is the time step, x is the instantaneous device output and x̄ is the smoothed output. The
SMOOTHING_FACTOR defaults to 0 which means no smoothing is performed. Note that SMOOTHING_FACTOR
only changes the value passed to control functions; it has no effect on the value of the DEVC written to the
CHID_devc.csv file.

16.4.1 Creating and Removing Obstructions

In many fire scenarios, the opening or closing of a door or window can lead to dramatic changes in the course
of the fire. Sometimes these actions are taken intentionally, sometimes as a result of the fire. Within the
framework of an FDS calculation, these actions are represented by the creation or removal of solid obstacles,
or the opening or closing of exterior vents.

Remove or create a solid obstruction by assigning the character string DEVC_ID to indicate the name of
a DEVC ID on the OBST line that is to be created or removed. This will direct FDS to remove or create the
obstruction when the device changes state to .FALSE. or .TRUE., respectively. For example, the lines

&OBST XB=..., DEVC_ID='det2' /
&DEVC XYZ=..., ID='det2', INITIAL_STATE=.TRUE. /
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will cause the given obstruction to be removed when the specified DEVC changes state.
Creation or removal at a predetermined time can be performed using a DEVC that has TIME as its mea-

sured quantity. For example, the following instructions will cause the specified HOLEs and OBSTstructions
to appear/disappear at the various designated times. These lines are part of the simple test case called
create_remove.fds.

&OBST XB=0.3,0.4,0.1,0.9,0.1,0.9, COLOR='PURPLE' /
&HOLE XB=0.2,0.4,0.2,0.3,0.2,0.3, COLOR='RED', DEVC_ID='timer1' /
&HOLE XB=0.2,0.4,0.7,0.8,0.7,0.8, COLOR='GREEN', DEVC_ID='timer2' /
&OBST XB=0.7,0.8,0.2,0.3,0.2,0.3, COLOR='BLUE', DEVC_ID='timer3' /
&OBST XB=0.7,0.8,0.6,0.7,0.6,0.7, COLOR='PINK', DEVC_ID='timer4' /
&OBST XB=0.5,1.0,0.0,1.0,0.0,0.1, COLOR='YELLOW', DEVC_ID='timer5' /
&HOLE XB=0.7,0.8,0.7,0.8,0.0,0.1, COLOR='BLACK', DEVC_ID='timer6' /
&HOLE XB=0.7,0.8,0.2,0.3,0.0,0.1, COLOR='GRAY 50', DEVC_ID='timer7' /

&DEVC XYZ=..., ID='timer1', SETPOINT=1., QUANTITY='TIME', INITIAL_STATE=.FALSE. /
&DEVC XYZ=..., ID='timer2', SETPOINT=2., QUANTITY='TIME', INITIAL_STATE=.TRUE. /
&DEVC XYZ=..., ID='timer3', SETPOINT=3., QUANTITY='TIME', INITIAL_STATE=.FALSE. /
&DEVC XYZ=..., ID='timer4', SETPOINT=4., QUANTITY='TIME', INITIAL_STATE=.TRUE. /
&DEVC XYZ=..., ID='timer5', SETPOINT=5., QUANTITY='TIME', INITIAL_STATE=.FALSE. /
&DEVC XYZ=..., ID='timer6', SETPOINT=6., QUANTITY='TIME', INITIAL_STATE=.TRUE. /
&DEVC XYZ=..., ID='timer7', SETPOINT=6., QUANTITY='TIME', INITIAL_STATE=.FALSE. /

At the start of the simulation, the purple obstruction is present with a red block embedded in it. This red
block is actually a HOLE whose initial state is .FALSE., i.e., the hole is filled. Also at the start of the
simulation, there is a pink obstruction that is visible. At 1 s the red block disappears. At 2 s the empty
hole in the purple obstruction is filled with a green block. This hole was initially true, i.e. empty. The blue
obstruction appears at 3 s because its initial state is false, meaning that it does not exist initially. The pink
obstruction disappears at 4 s because its initial state is true and this state changes at 4 s. At 5 s a yellow
obstruction appears with one empty hole and one embedded gray block. At 6 s the gray block disappears
because it is a hole that was initially false and therefore was filled with the gray block when its parent
obstruction (yellow) was created. Also at 6 s the hole originally present in the yellow obstruction is filled
with a black block because it was a hole that was initially empty and then filled when its DEVC changed state.
You should always try a simple example first before embarking on a complicated creation/removal scheme
for obstructions and holes.

To learn how to create and remove obstructions multiple times, see Section 16.5.5 for information about
the custom control feature.

16.4.2 Activating and Deactivating Vents

When a device or control function is applied to a VENT, the purpose is to either activate or deactivate any
time ramp associated with the VENT via its DEVC_ID. For example, to control a fan, do the following:

&SURF ID='FAN', VOLUME_FLOW=5. /
&VENT XB=..., SURF_ID='FAN', DEVC_ID='det2' /
&DEVC ID='det2', XYZ=..., QUANTITY='TIME', SETPOINT=30., INITIAL_STATE=.FALSE. /

Note that at 30 s, the “state” of the ’FAN’ changes from .FALSE. to .TRUE., or more simply, the ’FAN’
turns on. Since there is no explicit time function associated with the ’FAN’, the default 1 s ramp-up will
begin at 30 s instead of at 0 s. If INITIAL_STATE=.TRUE., then the fan should turn off at 30 s. Essentially,
“activation” of a VENT causes all associated time functions to be delayed until the device SETPOINT is
reached. “Deactivation” of a VENT turns off all time functions. Usually this means that the parameters on
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the SURF line are all nullified, so it is a good idea to check the functionality with a simple example.
A ’MIRROR’ or ’OPEN’ VENT should not be activated or deactivated. You can, however, place an

obstruction in front of an ’OPEN’ VENT and then create it or remove it to model the closing or opening of a
door or window.

16.5 Advanced Control Functions: The CTRL Namelist Group

There are many systems whose functionality cannot be described by a simple device with a single “setpoint.”
Consider for example, a typical HVAC system. It is controlled by a thermostat that is given a temperature
setpoint. The system turns on when the temperature goes below the setpoint by some amount and then turns
off when the temperature rises above that same setpoint by some amount. This behavior cannot be defined
by merely specifying a single setpoint. You must also define the range or “deadband” around the setpoint,
and whether an increasing or decreasing temperature activates the system. For the HVAC example, crossing
the lower edge of the deadband activates heating; crossing the upper edge activates cooling. These more
complicated behaviors can be modeled in FDS using CTRLs. The following parameters dictate how a control
function will behave:

ID A name for the control function that is unique over all control functions.

FUNCTION_TYPE The type of control function. The possible types are shown in Table 16.2.

INPUT_ID A list of DEVC or CTRL IDs that are the inputs to the control function. Up to forty inputs can be
specified. If a DEVC or CTRL is being used as an INPUT_ID for a control function, then it must have a
unique ID over both devices and control functions. Additionally, a control function cannot be used as
an input for itself.

SETPOINT The value of the control function at which its state changes. This is only appropriate for func-
tions that return numerical values.

TRIP_DIRECTION A positive integer means the control function will change state when its value increases
past the setpoint and a negative integer means the control function will change state when its value
decreases past the setpoint. The default value is +1.

LATCH If this logical value is set to .TRUE. the control function will only change state once. The default
value is .TRUE..

INITIAL_STATE This logical value is the initial state of the control function. The default value is .FALSE.
For example, if an obstruction associated with the control function is to disappear, set INITIAL_STATE
to .TRUE.

For any object for which a DEVC_ID can be specified (such as OBST or VENT), a CTRL_ID can be specified
instead.

If you want to design a system of controls and devices that involves multiple changes of state, include
the attribute LATCH=.FALSE. on the relevant DEVC or CTRL input lines. By default, devices and controls
may only change state once, like a sprinkler activating or smoke detector alarming. LATCH is .TRUE. by
default for both devices and controls.

If you want a DEVC to operate based on the logical state of a CTRL, set QUANTITY equal to ’CONTROL’
and set the CTRL_ID on the DEVC input to the ID of the control function.

The output value of numerical control function is defined by a DEVC line with QUANTITY set equal to
’CONTROL VALUE’ and CTRL_ID set equal to the ID of the control function. You can then use SETPOINT
to have the DEVC operate a particular output value of the control function.
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Table 16.2: Control function types.

FUNCTION_TYPE Purpose
ANY Changes state if any INPUTs are .TRUE.
ALL Changes state if all INPUTs are .TRUE.
ONLY Changes state if and only if N INPUTs are .TRUE.
AT_LEAST Changes state if at least N INPUTs are .TRUE.
TIME_DELAY Changes state DELAY s after INPUT becomes .TRUE.
CUSTOM Changes state based on evaluating a RAMP of the function’s input
DEADBAND Behaves like a thermostat
KILL Terminates code execution if its sole INPUT is .TRUE.
RESTART Dumps restart files if its sole INPUT is .TRUE.
SUM Sums the outputs of the INPUTs
SUBTRACT Subtracts the second INPUT from the first
MULTIPLY Multiplies the outputs of the INPUTs
DIVIDE Divides the first INPUT by the second
POWER The first INPUT to the power of the second
EXP The exponential of the INPUT
LOG The natural logarithm of the INPUT
COS The cosine of the INPUT
SIN The sine of the INPUT
ACOS The arccosine of the INPUT
ASIN The arcsine of the INPUT
PID A Proportional-Integral-Derivative control function

16.5.1 Control Functions: ANY, ALL, ONLY, and AT_LEAST

Suppose you want an obstruction to be removed (a door is opened, for example) after any of four smoke
detectors in a room has activated. Use input lines of the form:

&OBST XB=..., SURF_ID='...', CTRL_ID='SD' /

&DEVC XYZ=1,1,3, PROP_ID='Acme Smoker', ID='SD_1' /
&DEVC XYZ=1,4,3, PROP_ID='Acme Smoker', ID='SD_2' /
&DEVC XYZ=4,1,3, PROP_ID='Acme Smoker', ID='SD_3' /
&DEVC XYZ=4,4,3, PROP_ID='Acme Smoker', ID='SD_4' /
&CTRL ID='SD', FUNCTION_TYPE='ANY', INPUT_ID='SD_1','SD_2','SD_3','SD_4',

INITIAL_STATE=.TRUE. /

The INITIAL_STATE of the control function SD is .TRUE., meaning that the obstruction exists initially.
The “change of state” means that the obstruction is removed when any smoke detector alarms. By default,
the INITIAL_STATE of the control function SD is .FALSE., meaning that the obstruction does not exist
initially.

Suppose that now you want the obstruction to be created (a door is closed, for example) after all four
smoke detectors in a room have activated. Use a control line of the form:

&CTRL ID='SD', FUNCTION_TYPE='ALL', INPUT_ID='SD_1','SD_2','SD_3','SD_4' /

198



The control functions AT_LEAST and ONLY are generalizations of ANY and ALL. For example,

&CTRL ID='SD', FUNCTION_TYPE='AT_LEAST', N=3, INPUT_ID='SD_1','SD_2','SD_3','SD_4' /

changes the state from .FALSE. to .TRUE. when at least 3 detectors activate. Note that in this example,
and the example below, the parameter N is used to specify the number of activated devices required for the
conditions of the control function to be satisfied. The control function,

&CTRL ID='SD', FUNCTION_TYPE='ONLY', N=3, INPUT_ID='SD_1','SD_2','SD_3','SD_4' /

changes the state from .FALSE. to .TRUE. when 3, and only 3, detectors activate.

16.5.2 Control Function: TIME_DELAY

The TIME_DELAY control function starts a timer of length DELAY when its input changes state. When the
timer expires, the TIME_DELAY control function will change state. Note, that the timer starts at each change
in state of the input; therefore, if the input changes state a second time before the first timer ends, the timer
will get reset. This function enables FDS to model time delays between when a device activates and when
some other action occurs, like in a dry pipe sprinkler system.

&DEVC XYZ=2,2,3, PROP_ID='Acme Sprinkler_link', QUANTITY='LINK TEMPERATURE',
ID='Spk_29_link' /

&DEVC XYZ=2,2,3, PROP_ID='Acme Sprinkler', QUANTITY='CONTROL', ID='Spk_29',
CTRL_ID='dry pipe' /

&CTRL ID='dry pipe', FUNCTION_TYPE='TIME_DELAY', INPUT_ID='Spk_29_link', DELAY=30. /

This relationship between a sprinkler and its pipes means that the sprinkler spray is controlled (in this case
delayed) by the ’dry pipe’, which adds 30 s to the activation time of Spk_29, measured by Spk_29_link,
before water can flow out of the head.

16.5.3 Control Function: DEADBAND

This control function behaves like an HVAC thermostat. It can operate in one of two modes analogous to
heating or cooling. The function is provided with an INPUT_IDwhich is the DEVCwhose value is used by the
function, an upper and lower SETPOINT, and the mode of operation by ON_BOUND. If ON_BOUND=’LOWER’,
the function changes state from its INITIAL_STATE when the value of the INPUT_ID drops below the lower
value in SETPOINT and reverts when it increases past the upper value, i.e., like a heating system. The reverse
will occur if ON_BOUND=’UPPER’, i.e., a cooling system.

For an HVAC system, the following lines of input would set up a simple thermostat:

&SURF ID='FAN', TMP_FRONT=40., VOLUME_FLOW=-1. /
&VENT XB=-0.3,0.3,-0.3,0.3,0.0,0.0, SURF_ID='FAN', CTRL_ID='thermostat' /
&DEVC ID='TC', XYZ=2.4,5.7,3.6, QUANTITY='TEMPERATURE' /
&CTRL ID='thermostat', FUNCTION_TYPE='DEADBAND', INPUT_ID='TC',

ON_BOUND='LOWER', SETPOINT=23.,27., LATCH=.FALSE./

Here, we want to control the VENT that simulates the FAN, which blows hot air into the room. A DEVC

called TC is positioned in the room to measure the TEMPERATURE. The thermostat uses a SETPOINT to
turn on the FAN when the temperature falls below 23 ◦C (ON_BOUND=’LOWER’) and it turns off when the
temperature rises above 27 ◦C.

Note that a deadband controller needs to have LATCH set to .FALSE.
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16.5.4 Control Function: RESTART and KILL

There are times when you might only want to run a simulation until some goal is reached, or you might
want to create some baseline condition and then run multiple permutations of that baseline. For example,
you might want to run a series of simulations where different mitigation strategies are tested once a detector
alarms. Using the RESTART control function, you can cause a restart file to be created once a desired
condition is met. The simulation can continue and the restart files can be copied to have the job identifying
string, CHID, of the various permutations (providing of course that the usual restrictions on the use of restart
files are followed). For example, the lines

&DEVC ID='temp', QUANTITY='TEMPERATURE', SETPOINT=1000., XYZ=4.5,6.7,3.6 /
&DEVC ID='velo', QUANTITY='VELOCITY', SETPOINT=10., XYZ=4.5,6.7,3.6 /

&CTRL ID='kill', FUNCTION_TYPE='KILL', INPUT_ID='temp' /
&CTRL ID='restart', FUNCTION_TYPE='RESTART', INPUT_ID='velo' /

will kill the job and output restart files when the temperature at the given point rises above 1000 ◦C; or just
force restart files to be output when the velocity at a given point exceeds 10 m/s.

16.5.5 Control Function: CUSTOM

For most of the control function types, the logical (true/false) output of the devices and control functions
and the time they last changed state are taken as inputs. A CUSTOM function uses the numerical output of a
DEVC along with a RAMP to determine the output of the function. When the RAMP output for the DEVC value
is negative, the CTRL will have the value of its INITIAL_STATE. When the RAMP output for the DEVC value
is positive, the CTRL will have the opposite value of its INITIAL_STATE. In the case below, the CUSTOM

control function uses the numerical output of a timer device as its input. The function returns true (the
default value for INITIAL_STATE is .FALSE.) when the F parameter in the ramp specified with RAMP_ID

is a positive value and false when the RAMP F value is negative. In this case, the control would start false and
would switch to true when the timer reaches 60 s. It would then stay in a true state until the timer reaches
120 s and would then change back to false.

Note that when using control functions the IDs assigned to both the CTRL and the DEVC inputs must be
unique across both sets of inputs, i.e., you cannot use the same ID for both a control function and a device.
You can make a fan operate on a fixed cycle by using a CUSTOM control function based on time:

&SURF ID='FAN', TMP_FRONT=40., VOLUME_FLOW=-1. /
&VENT XB=-0.3,0.3,-0.3,0.3,0.0,0.0, SURF_ID='FAN', CTRL_ID='cycling timer' /
&DEVC ID='TIMER', XYZ=2.4,5.7,3.6, QUANTITY='TIME' /
&CTRL ID='cycling timer', FUNCTION_TYPE='CUSTOM', INPUT_ID='TIMER', RAMP_ID='cycle' /
&RAMP ID='cycle', T= 59, F=-1 /
&RAMP ID='cycle', T= 61, F= 1 /
&RAMP ID='cycle', T=119, F= 1 /
&RAMP ID='cycle', T=121, F=-1 /

In the above example the fan will be off initially, turn on at 60 s and then turn off at 120 s.
You can make an obstruction appear and disappear multiple times by using the following lines

&OBST XB=..., SURF_ID='whatever', CTRL_ID='cycling timer' /
&DEVC ID='TIMER', XYZ=..., QUANTITY='TIME' /
&CTRL ID='cycling timer', FUNCTION_TYPE='CUSTOM', INPUT_ID='TIMER', RAMP_ID='cycle' /
&RAMP ID='cycle', T= 0, F=-1 /
&RAMP ID='cycle', T= 59, F=-1 /
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&RAMP ID='cycle', T= 61, F= 1 /
&RAMP ID='cycle', T=119, F= 1 /
&RAMP ID='cycle', T=121, F=-1 /

The above will have the obstacle initially removed, then added at 60 s, and removed again at 120 s.
Experiment with these combinations using a simple case before trying a case to make sure that FDS

indeed is doing what is intended.

16.5.6 Control Function: Math Operations

The control functions that perform simple math operations (SUM, SUBTRACT, MULTIPLY, DIVIDE, and
POWER) can have a constant value specified as one of their inputs. This is done by specifying one of the
INPUT_IDs as ’CONSTANT’ and providing the value using the input CONSTANT. For example, the inputs
below represent a control function whose state changes when the square of the velocity exceeds 10 (see
Section 16.4 for an explanation of TRIP_DIRECTION).

&DEVC ID='SPEED SENSOR', XYZ=..., QUANTITY='VELOCITY' /
&CTRL ID='multiplier', FUNCTION_TYPE='POWER',

INPUT_ID='SPEED SENSOR','CONSTANT', CONSTANT=2., SETPOINT=10.,
TRIP_DIRECTION=1 /

16.5.7 Control Function: PID Control Function

A PID (Proportional Integral Derivative) control function is a commonly used feedback controller for con-
trolling electrical and mechanical systems. The function computes an error between a process variable and a
desired setpoint. The goal of the PID function is to minimize the error. A PID control function is computed
as

u(t) = Kp e(t) + Ki

∫ t

0
e(t) dt + Kd

de(t)
dt

(16.10)

where Kp, Ki, and Kd are respectively the PROPORTIONAL_GAIN, the INTEGRAL_GAIN, and the
DIFFERENTIAL_GAIN; e(t) is the error given by subtracting the TARGET_VALUE from the input; and u(t)
is the output.

16.5.8 Combining Control Functions: A Pre-Action Sprinkler System

For a pre-action sprinkler system, the normally dry sprinkler pipes are flooded when a detection event
occurs. For this example, the detection event is when two of four smoke detectors alarm. It takes 30 s
to flood the piping network. The nozzle is a DEVC named ’NOZZLE 1’ controlled by the CTRL named
’nozzle trigger’. The nozzle activates when both detection and the time delay have occurred. Note
that the DEVC is specified with QUANTITY=’CONTROL’.

&DEVC XYZ=1,1,3, PROP_ID='Acme Smoker', ID='SD_1' /
&DEVC XYZ=1,4,3, PROP_ID='Acme Smoker', ID='SD_2' /
&DEVC XYZ=4,1,3, PROP_ID='Acme Smoker', ID='SD_3' /
&DEVC XYZ=4,4,3, PROP_ID='Acme Smoker', ID='SD_4' /
&DEVC XYZ=2,2,3, PROP_ID='Acme Nozzle', QUANTITY='CONTROL',

ID='NOZZLE 1', CTRL_ID='nozzle trigger' /

&CTRL ID='nozzle trigger', FUNCTION_TYPE='ALL', INPUT_ID='smokey','delay' /
&CTRL ID='delay', FUNCTION_TYPE='TIME_DELAY', INPUT_ID='smokey', DELAY=30. /

201



&CTRL ID='smokey', FUNCTION_TYPE='AT_LEAST', N=2,
INPUT_ID='SD_1','SD_2','SD_3','SD_4' /

Example Case: control_test_2

The control_test_2 example demonstrates the use of the mathematical and PID control functions. Two
compartments are defined with the left hand compartment initialized to 20 ◦C and the right hand compart-
ment to 10 ◦C. Control functions are defined to:

• Add the temperatures in the two compartments

• Subtract the right hand compartment temperature from the left hand compartment temperature

• Multiply the left hand temperature by 0.5

• Divide the left hand temperature by the right hand temperature

• Take the square root of the right hand temperature

• Use the time as input to a PID function with a target value of 5 and Kp=-0.5, Ki=0.001, and Kd=1

&CTRL ID='Add',FUNCTION_TYPE='SUM',INPUT_ID='LHS Temp','RHS Temp'/
&CTRL ID='Subtract',FUNCTION_TYPE='SUBTRACT',INPUT_ID='RHS Temp','LHS Temp'/
&CTRL ID='Multiply',FUNCTION_TYPE='MULTIPLY',INPUT_ID='LHS

Temp','CONSTANT',CONSTANT=0.5/
&CTRL ID='Divide',FUNCTION_TYPE='DIVIDE',INPUT_ID='LHS Temp','RHS Temp'/
&CTRL ID='Power',FUNCTION_TYPE='POWER',INPUT_ID='RHS Temp','CONSTANT',CONSTANT=0.5/
&CTRL ID='PID',FUNCTION_TYPE='PID',INPUT_ID='Time',TARGET_VALUE=5.,

PROPORTIONAL_GAIN=-0.5,INTEGRAL_GAIN=0.001,DIFFERENTIAL_GAIN=1./

Results are shown in Fig. 16.5.
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Figure 16.5: Results of the control_test_2 case.
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16.5.9 Combining Control Functions: A Dry Pipe Sprinkler System

For a dry-pipe sprinkler system, the normally dry sprinkler pipes are pressurized with gas. When a link
activates in a sprinkler head, the pressure drop allows water to flow into the pipe network. For this example
it takes 30 s to flood the piping network once a sprinkler link has activated. The sequence of events required
for operation is first ANY of the links must activate which starts the 30 s TIME_DELAY. Once the 30 s delay
has occurred, each nozzle with an active link, the ALL control functions, will then flow water.

&DEVC XYZ=2,2,3, PROP_ID='Acme Sprinkler Link', ID='LINK 1' /
&DEVC XYZ=2,3,3, PROP_ID='Acme Sprinkler Link', ID='LINK 2' /

&PROP ID='Acme Sprinkler Link', QUANTITY='LINK TEMPERATURE',
ACTIVATION_TEMPERATURE=74., RTI=30./

&DEVC XYZ=2,2,3, PROP_ID='Acme Nozzle', QUANTITY='CONTROL',
ID='NOZZLE 1', CTRL_ID='nozzle 1 trigger' /

&DEVC XYZ=2,3,3, PROP_ID='Acme Nozzle', QUANTITY='CONTROL',
ID='NOZZLE 2', CTRL_ID='nozzle 2 trigger' /

&CTRL ID='check links', FUNCTION_TYPE='ANY', INPUT_ID='LINK 1','LINK 2'/
&CTRL ID='delay', FUNCTION_TYPE='TIME_DELAY', INPUT_ID='check links', DELAY=30. /
&CTRL ID='nozzle 1 trigger', FUNCTION_TYPE='ALL', INPUT_ID='delay','LINK 1'/
&CTRL ID='nozzle 2 trigger', FUNCTION_TYPE='ALL', INPUT_ID='delay','LINK 2'/

16.5.10 Example Case: activate_vents

The simple test case called activate_vents demonstrates the several of the control functions. Figure 16.6
shows seven multiply-colored vents that activate at different times, depending on the particular timing or
control function.

Figure 16.6: Output of the activate_vents test case at 5, 10, and 15 s.

16.6 Controlling a RAMP

16.6.1 Changing the Independent variable

For any user-defined RAMP, the normal independent variable, for example time for RAMP_V, can be replaced
by the output of a DEVC. This is done by specifying the input DEVC_ID on one of the RAMP input lines. When
this is done, the current output of the DEVC is used as the independent variable for the RAMP. A CTRL_ID can
also be specified as long as the control function outputs a numerical value (i.e., is a mathematical function
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(Section 16.5.6) or a PID function (Section 16.5.7). In the following example a blower is ramped from 0 %
flow at 20 ◦C, to 50 % flow when the temperature exceeds 100 ◦C, and to 100 % flow when the temperature
exceeds 200 ◦C. This is similar functionality to the CUSTOM control function, but it allows for variable
response rather than just on or off.

&SURF ID='BLOWER', VEL=-2, RAMP_V='BLOWER RAMP' /
&DEVC XYZ=2,3,3, QUANTITY='TEMPERATURE', ID='TEMP DEVC' /
&RAMP ID='BLOWER RAMP', T= 20,F=0.0, DEVC_ID='TEMP DEVC' /
&RAMP ID='BLOWER RAMP', T=100,F=0.5 /
&RAMP ID='BLOWER RAMP', T=200,F=1.0 /

16.6.2 Freezing the Output Value, Example Case: hrr_freeze

There are occasions where you may want the value of a RAMP to stop updating. For example, if you are
simulating a growing fire in a room with sprinklers, you may wish to stop the fire from growing when
a sprinkler over the fire activates. This type of action can be accomplished by changing the input of the
RAMP to a DEVC (see the previous section) and then giving that DEVC either a NO_UPDATE_DEVC_ID or a
NO_UPDATE_CTRL_ID. When the specified controller changes its state to .TRUE. it will cause the DEVC to
stop updating its value. Since the DEVC is being used as the independent variable to a RAMP, the RAMP will
have its output remain the same. This is shown in the example below. A fire is given a linear RAMP from 0
to 1000 kW/m2 over 50 s. Rather than using the simulation time, the RAMP uses a DEVC for the time. The
timer is set to freeze when another DEVC measuring time reaches 200 ◦C. Figure 16.7 shows the result of
these inputs in the test case hrr_freeze where it can be seen that the pyrolysis rate stops increasing once
the gas temperature reaches 200 ◦C.

&SURF ID='FIRE', HRRPUA=1000., RAMP_Q='FRAMP', COLOR='ORANGE'/
&RAMP ID='FRAMP', T= 0, F=0, DEVC_ID='FREEZE TIME'/
&RAMP ID='FRAMP', T=50, F=1/
&DEVC XYZ=..., QUANTITY='TEMPERATURE', SETPOINT=200., INITIAL_STATE=.FALSE.,

ID='TEMP'/
&DEVC XYZ=..., QUANTITY='TIME', NO_UPDATE_DEVC_ID='TEMP', ID='FREEZE TIME'/
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Figure 16.7: Temperature (left) and burning rate (right) outputs of the hrr_freeze test case.

It should be noted that devices are updated sequentially in the order that they are listed in the input file
and that devices in different meshes do not share values until the end of a time step. This means that if the
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device being frozen is on a different mesh or is listed before the device that freezes it, it will not be frozen
until the next time step.
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16.7 Visualizing FDS Devices in Smokeview

This section provides an overview of various objects that can be drawn by Smokeview and how to customize
their appearance. Further technical details may be found in the Smokeview User’s Guide [2].

16.7.1 Devices that Indicate Activation

Devices like sprinklers and smoke detectors can be drawn in one of two ways so as to indicate activation.
When FDS determines that a device has activated it places a message in the .smv file indicating the ob-
ject number, the activation time and the state (0 for inactive or 1 for active). Smokeview then draws the
corresponding object. See Tables 16.3 and 16.4 for images.

The character string, SMOKEVIEW_ID, on the PROP line associates an FDS device with a Smokeview
object. For example, the following lines instruct Smokeview to draw the device in the shape of a ’target’:

&PROP ID='my target', SMOKEVIEW_ID='target' /
&DEVC XYZ=0.5,0.8,0.6, QUANTITY='TEMPERATURE', PROP_ID='my target' /

Table 16.3: Single frame static objects

SMOKEVIEW_ID Image

sensor

target
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Table 16.4: Dual frame static objects

SMOKEVIEW_ID
Image

inactive active

heat_detector

nozzle

smoke_detector

sprinkler_upright
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Table 16.4: Dual frame static objects (continued)

SMOKEVIEW_ID
Image

inactive active

sprinkler_pendent

16.7.2 Devices with Variable Properties

The appearance of Smokeview objects may be modified using data specified with the array of character
strings called SMOKEVIEW_PARAMETERS on the PROP line. For example, the input lines

&PROP ID='ballprops', SMOKEVIEW_ID='ball',
SMOKEVIEW_PARAMETERS(1:6)='R=255','G=0','B=0','DX=0.5','DY=0.25','DZ=0.1' /

&DEVC XYZ=0.5,0.8,1.5, QUANTITY='TEMPERATURE', PROP_ID='ballprops' /

create an ellipsoid colored red with x, y, and z axis diameters of 0.5 m and 0.25 m and 0.1 m, respectively.
Note that these parameters are enclosed within single quotes because they are character strings passed to
Smokeview.

Table 16.5 lists objects with variable properties. Note that the tsphere object uses a texture map or
image to alter its appearance. The texture map is specified by placing the characters t% before the texture
file name, for example, t%texturefile.jpg.

Table 16.5: Dynamic Smokeview objects

SMOKEVIEW_ID SMOKEVIEW_PARAMETERS Image

ball

SMOKEVIEW_PARAMETERS(1:6)=

’R=128’,’G=192’,’B=255’,

’DX=0.5’,’DY=.75’,’DZ=1.0’

R, G, B - color components (0 to 255)
DX, DY, DZ - amount ball is stretched along x,
y, z axis (m)

cone

SMOKEVIEW_PARAMETERS(1:5)=

’R=128’,’G=255’,’B=192’,

’D=0.4’,’H=0.6’

R, G, B - color components (0 to 255)
D, H - diameter and height (m)
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Table 16.5: Dynamic Smokeview objects (continued)

SMOKEVIEW_ID SMOKEVIEW_PARAMETERS Image

fan

SMOKEVIEW_PARAMETERS(1:11)=

’HUB_R=0’,’HUB_G=0’,’HUB_B=0’,

’HUB_D=0.1’,’HUB_L=0.12’,

’BLADE_R=128’,’BLADE_G=64’,

’BLADE_B=32’,’BLADE_ANGLE=60.0’,

’BLADE_D=0.5’,’BLADE_H=0.09’

HUB_R, HUB_G, HUB_B - color components of
fan hub (0 to 255)
HUB_D, HUB_L - diameter and length of fan hub
(m)
BLADE_R, BLADE_G, BLADE_B - color com-
ponents of fan blades (0 to 255)
BLADE_ANGLE, BLADE_D, BLADE_H - angle,
diameter and height of a fan blade

tsphere

SMOKEVIEW_PARAMETERS(1:9)=

’R=255’,’G=255’,’B=255’,

’AX0=0.0’,’ELEV0=90.0’,

’ROT0=0.0’,’ROTATION_RATE=10.0’,

’D=1.0’,

’tfile="t%sphere_cover_04.png"’

R, G, B - color components (0 to 255)
AX0, ELEV0, ROT0 - initial azimuth, elevation
and rotation angle (deg)
ROTATION_RATE - rotation rate about z axis
(deg/s)
D - diameter (m)
tfile - name of texture map file
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Table 16.5: Dynamic Smokeview objects (continued)

SMOKEVIEW_ID SMOKEVIEW_PARAMETERS Image

vent

SMOKEVIEW_PARAMETERS(1:6)=

’R=192’,’G=192’,’B=128’,

’W=0.5’,’H=1.0’, ’ROT=90.0’

R, G, B - color components (0 to 255)
W, H - width and height (m)
ROT - rotation angle (deg)

inactive vent

active vent

16.7.3 Objects that Represent Lagrangian Particles

Lagrangian particles, like water droplets or small solid particles, are represented in Smokeview as tiny
points. However, it is possible to draw Lagrangian particles in other ways, such as those depicted in Ta-
ble 16.6. For example, the following lines define particles that represent segments of electrical cables that
are 10 cm long with a diameter of 1.24 cm:

&PART ID='cables', QUANTITIES(1)='PARTICLE TEMPERATURE', ..., PROP_ID='cable image' /
&PROP ID='cable image', SMOKEVIEW_ID='tube', SMOKEVIEW_PARAMETERS='L=0.1','D=0.0124' /

By default, the cables are colored black, but you can specify your own default color using the parameters
R, G, and B. In addition, you can color the particles according to the listed QUANTITIES on the PART line.
Menus in Smokeview allow you to toggle between the various color options.

You can control the orientation of the ’tube’ objects using a parameter such as ’RANDXY=1’ that
causes the cylinders to be drawn randomly in the x− y plane. Objects with the parameters U-VEL, V-VEL,
and W-VEL stretch according to the respective velocity components associated with the moving particles.

Table 16.6: Dynamic Smokeview objects for Lagrangian particles

SMOKEVIEW_ID SMOKEVIEW_PARAMETERS Image

box

SMOKEVIEW_PARAMETERS(1:6)=

’R=192’,’G=255’,’B=128’,

’DX=0.25’,’DY=.5’,’DZ=0.125’

R, G, B - color components (0 to 255)
DX, DY, DZ - amount box is stretched along
axes
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Table 16.6: Dynamic Smokeview objects for Lagrangian particles (continued)

SMOKEVIEW_ID SMOKEVIEW_PARAMETERS Image

tube

SMOKEVIEW_PARAMETERS(1:6)=

’R=255’,’G=0’,’B=0’,

’D=0.2’,’L=0.6’,’RANDXY=1’

R, G, B - color components (0 to 255)
D, L - diameter and length (m)
RANDXY - randomly orient in x-y plane
RANDXZ - randomly orient in x-z plane
RANDYZ - randomly orient in y-z plane
RANDXYZ - random orientation
DIRX, DIRY, DIRZ - orient along axis

velegg

SMOKEVIEW_PARAMETERS(1:9)=

’R=192’, ’G=64’, ’B=32’

’U-VEL=1.’, ’V-VEL=1.’, ’W-VEL=1.’

’VELMIN=0.01’, ’VELMAX=0.2’, ’D=1.0’

R, G, B - color components (0 to 255)
U-VEL, V-VEL, W-VEL - velocity components
(m/s)
VELMIN, VELMAX - minimum and maximum
velocity
D - diameter of egg at maximum velocity (m)

veltube

SMOKEVIEW_PARAMETERS(1:9)=

’R=0’, ’G=0’, ’B=0’

’U-VEL=1.’, ’V-VEL=1.’, ’W-VEL=1.’

’VELMIN=0.01’, ’VELMAX=0.2’, ’D=0.1’

R, G, B - color components (0 to 255)
U-VEL, V-VEL, W-VEL - velocity components
(m/s)
VELMIN, VELMAX - minimum and maximum
velocity
D - diameter of tube at VELMAX (m)
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Chapter 17

Output

FDS has various types of output files that store computed data. Some of the files are in binary format and
intended to be read and rendered by Smokeview. Some of the files are just comma-delimited text files. It
is important to remember that you must explicitly declare in the input file most of the FDS output data. A
considerable amount of the input file is usually devoted to this.

To visualize the flow patterns better, save planar slices of data, either in the gas or solid phases, by using
the SLCF (SLiCe File) or BNDF (BouNDary File) namelist group. Both of these output formats permit you
to animate these quantities in time. For static pictures of the flow field, use the Plot3D output, a format that
is used by many CFD programs as a simple way to store specified quantities over the entire mesh at one
instant in time. Finally, tracer particles can be injected into the flow field from vents or obstacles, and then
viewed in Smokeview. Use the PART namelist group to control the injection rate, sampling rate and other
parameters associated with particles.

17.1 Output Control Parameters: The DUMP Namelist Group

The namelist group DUMP contains parameters (Table 18.6) that control the rate at which output files are
written, and various other global parameters associated with output files. Its parameters include:

NFRAMES Number of output dumps per calculation. The default is 1000. Device data, slice data, parti-
cle data, isosurface data, 3D smoke data, boundary data, solid phase profile data, and control function
data are saved every (T_END-T_BEGIN)/NFRAMES seconds unless otherwise specified using DT_DEVC,
DT_SLCF, DT_PART, DT_ISOF, DT_BNDF, DT_PROF, or DT_CTRL. Note that DT_SLCF controls Smoke3D
output. DT_HRR controls the output of heat release rate and associated quantities.

MASS_FILE If .TRUE., produce an output file listing the total masses of all gas species as a function of
time. It is .FALSE. by default because the calculation of all gas species in all mesh cells is time-
consuming. The parameter DT_MASS controls the frequency of output.

MAXIMUM_PARTICLES Maximum number of Lagrangian particles that can be included on any mesh at any
given time. (Default 1000000)

SMOKE3D If .FALSE., do not produce an animation of the smoke and fire. It is .TRUE. by default.

DT_PL3D The time between Plot3D file output. Note that versions of FDS before 6 output Plot3D files by
default. Now, you must specify the interval of output using this parameter. Its default value is 1000000 s,
meaning that there is no Plot3D output unless specified.
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FLUSH_FILE_BUFFERS FDS purges the output file buffers periodically and forces the data to be written
out into the respective output files. It does this to make it easier to view the case in Smokeview while it
is running. It has been noticed on Windows machines that occasionally a runtime error occurs because
of file access problems related to the buffer flushing. If this happens, set this parameter to .FALSE.,
but be aware that it may not be possible to look at output in Smokeview until after the calculation is
finished. You may also set DT_FLUSH to control the frequency of the file flushing. Its default value is
the duration of the simulation divided by NFRAMES.

STATUS_FILES If .TRUE., produces an output file CHID.notready which is deleted, if the simulation is
completed successfully. This file can be used as an error indicator. It is .FALSE. by default.

17.2 Device Output: The DEVC Namelist Group

Every device DEVC contains a QUANTITY that it monitors. Usually this QUANTITY is written out to a comma-
delimited spreadsheet file with the suffix _devc.csv. The quantities are listed in Table 17.3. There are two
types of DEVC output. The first is a time history of the given QUANTITY over the course of the simulation.
The second is a time-averaged profile consisting of a linear array of point devices. Each is explained below.

17.2.1 Single Point Output

If you just want to record the time history of the temperature at a given point, add the line:

&DEVC XYZ=6.7,2.9,2.1, QUANTITY='TEMPERATURE', ID='T-1' /

and a column will be added to the output file CHID_devc.csv under the label ’T-1’. In this case, the ID
has no other role than as a column label in the output file. FDS reports the value of the QUANTITY in the
cell where the point XYZ is located.

Devices on Solid Surfaces

When prescribing a solid phase quantity, be sure to position the device at a solid surface. It is not always
obvious where the solid surface is since the mesh does not always align with the input obstruction locations.
To help locate the appropriate surface, the parameter IOR must be included when designating a solid phase
quantity, except when using the STATISTICS feature described in Section 17.10.10 in which case the output
quantity is not associated with just a single point on the surface. If the orientation of the solid surface is in
the positive x direction, set IOR=1. If it is in the negative x direction, set IOR=-1, and so for the y and z
directions. For example, the line

&DEVC XYZ=0.7,0.9,2.1, QUANTITY='WALL TEMPERATURE', IOR=-2, ID='...' /

designates the surface temperature of a wall facing the negative y direction. There are still instances where
FDS cannot determine which solid surface is being designated, in which case an error message appears in
the diagnostic output file. Re-position the device and try again. It is best to position the device, via the real
triplet XYZ, such that the device location is either at or within a cell width outside of the solid surface. The
search algorithm in FDS will look for the nearest solid surface in the direction opposite to that indicated by
IOR.
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Integrated Quantities

In addition to point measurements, the DEVC group can be used to report integrated quantities (See Ta-
ble 17.3). For example, you may want to know the mass flow out of a door or window. To report this, add
the line

&DEVC XB=0.3,0.5,2.1,2.5,3.0,3.0, QUANTITY='MASS FLOW', ID='whatever' /

Note that in this case, a plane is specified rather than a point. The sextuplet XB is used for this purpose.
Notice when a flow is desired, two of the six coordinates need to be the same. Another QUANTITY, HRR, can
be used to compute the total heat release rate within a subset of the domain. In this case, the sextuplet XB
ought to define a volume rather than a plane. Specification of the plane or volume over which the integration
is to take place can only be done using XB – avoid planes or volumes that cross multiple mesh boundaries.
FDS has to decide which mesh to use in the integration, and it chooses the finest mesh overlapping the
centroid of the designated plane or volume.

17.2.2 Linear Array of Point Devices

You can use a single DEVC line to specify a linear array of devices. By adding the parameter POINTS and
using the sextuple coordinate array XB, you can direct FDS to create a line of devices from (x1,y1,z1) to
(x2,y2,z2). There are two options.

Steady-State Profile

Sometimes it is convenient to calculate a steady-state profile. For example, the vertical velocity profile along
the centerline of a doorway can be recorded with the following line of input:

&DEVC XB=X1,X2,Y1,Y2,Z1,Z2, QUANTITY='U-VELOCITY', ID='vel', POINTS=20 /

In a file called CHID_line.csv, there will be between 1 and 4 columns of data associated with this single
DEVC line. If X1 is different than X2, there will be a column of x coordinates associated with the linear array
of points. The same holds for the y and z coordinates. The last column contains the 20 temperature points
averaged over the last DT_DEVC_LINE of the simulation—DT_DEVC_LINE is set on the DUMP line. It is half
the total simulation time by default. This is a convenient way to output a time-averaged linear profile of a
quantity, like an array of thermocouples. Note that the statistics output to the _line.csv file start being
averaged at T=T_END-DT_DEVC_LINE. Prior to this point in the simulation, the raw values are output. This
prevents initial transients from biasing the stat values and forces the “line” file output at the end of the
simulation to be equivalent to manually processing a point DEVC time history over the last DT_DEVC_LINE
of the simulation.

A single “line” file can hold more than a single line of data. By default, the coordinate columns are
labeled using the ID of the DEVC appended with either -x, -y, or -z. To change these labels, use X_ID,
Y_ID, and/or Z_ID. To suppress the coordinate columns altogether, add HIDE_COORDINATES=.TRUE. to
the DEVC line. This is convenient if you have multiple arrays of data that use the same coordinates. If you
want the data plotted as a function of the distance from the origin, r =

√
x2 + y2 + z2, provide the label

R_ID.

Time-Varying Profile

If you do not want a steady-state profile, but rather you just want to specify an array of evenly spaced
devices, you can use a similar input line, except with the additional attribute TIME_HISTORY.
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&DEVC XB=X1,X2,Y1,Y2,Z1,Z2, QUANTITY='U-VELOCITY', ID='vel', POINTS=20,
TIME_HISTORY=.TRUE. /

This directs FDS to just add 20 devices to the on-going list, saving you from having to write 20 DEVC lines.
The ID for each device will be ’vel-01’, ’vel-02’, etc.

Single-Point Statistics

Mean By default, a line of devices records a mean or time-averaged profile of a particular quantity,

φ =
∑

n
i=1 φi

n
(17.1)

where n is the number of uniform output samples.

Min, Max For line devices it is also possible to record the min or the max values of the output quantity
for each point on the line. Set STATISTICS=’TIME MIN’ or STATISTICS=’TIME MAX’. FDS will
output the values over the last DT_DEVC_LINE of the simulation.

17.2.3 Quantities at Certain Depth

To record the temperature inside the surface, you can use a device as follows:

&DEVC XYZ=..., QUANTITY='INSIDE WALL TEMPERATURE', DEPTH=0.005, ID='Temp_1', IOR=3 /

The parameter DEPTH (m) indicates the distance inside the solid surface. If DEPTH is positive the distance
is measured from the front surface. If negative, it is measured from the back surface. Note that if the wall
thickness is decreasing over time due to the solid phase reactions, and the distance is measured from the
current front surface, the measurement point will be moving towards the back side of the solid. Eventually,
the measurement point may emerge from the solid, in which case it starts to show ambient temperature.
Measuring the distance from the back surface can then be better suited for the purpose.

To record the material component’s density with time, use the output quantity ’SOLID DENSITY’ in
the following way:

&DEVC ID='...', XYZ=..., IOR=3, QUANTITY='SOLID DENSITY', MATL_ID='wood', DEPTH=0.001
/

This produces a time history of the density of the material referred to as ’wood’ on a MATL line. The density
is recorded 1 mm beneath the surface which is oriented in the positive z direction. Note that if ’wood’ is
part of a mixture, the density represents the mass of ’wood’ per unit volume of the mixture.

To record the solid conductivity, use QUANTITY=’SOLID CONDUCTIVITY’. To record the solid spe-
cific heat, use QUANTITY=’SOLID SPECIFIC HEAT’. These quantities do not need the MATL_ID key-
word.

Note that these quantities are allowed only as a DEVC, not a BNDF, output.

17.2.4 Back Surface Temperature

If you just want to know the temperature of the back surface of the “wall,” then use

&DEVC XYZ=..., QUANTITY='BACK WALL TEMPERATURE', ID='Temp_b', IOR=3 /
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Note that this quantity is only meaningful if the front or exposed surface of the “wall” has the attribute
BACKING=’EXPOSED’ on the SURF line that defines it. The coordinates, XYZ, and orientation, IOR, refer
to the front surface. To check that the heat conduction calculation is being done properly, you can add the
additional line

&DEVC XYZ=..., QUANTITY='WALL TEMPERATURE', ID='Temp_f', IOR=-3 /

where now XYZ and IOR refer to the coordinates and orientation of the back side of the wall. These two wall
temperatures ought to be the same. Remember that the “wall” in this case can only be at most one mesh cell
thick, and its THICKNESS need not be the same as the mesh cell width. Rather, the THICKNESS ought to be
the actual thickness of the “wall” through which FDS performs a 1-D heat conduction calculation.

17.3 Profiles of Quantities: The PROF Namelist Group

FDS uses a fine one-dimensional mesh at each boundary cell to compute heat transfer within a solid. Use
the PROF output to record the properties of the solid over the entire thickness. The parameters (Table 18.19)
to specify a given PROFile are similar to those used to specify a surface quantity in the DEVC group. XYZ
designates the triplet of coordinates, QUANTITY is the physical quantity to monitor, IOR the orientation,
and ID an identifying character string. Here is an example of how you would use this feature to get a time
history of temperature profiles within a given solid obstruction:

&PROF XYZ=..., QUANTITY='TEMPERATURE', ID='T-1', IOR=3 /

Other possible quantities are the total density of the wall (QUANTITY = ’DENSITY’) or densities of solid
material components (QUANTITY = ’[MATL_ID]’), where MATL_ID is the name of the material. Each
PROF line creates a separate file. The format of the file produced by each PROF line includes the node
coordinates and specified quantity every DT_PROF s. However, if you specify FORMAT_INDEX=2 on the
PROF line, the resulting file will contain columns containing only the final set of node coordinates and
quantity values. This is handy for displaying a steady-state temperature profile.

17.4 Animated Planar Slices: The SLCF Namelist Group

The SLCF (“slice file”) namelist group parameters (Table 18.24) allows you to record various gas phase
quantities at more than a single point. A “slice” refers to a subset of the whole domain. It can be a line,
plane, or volume, depending on the values of XB. The sextuplet XB indicates the boundaries of the “slice”
plane. XB is prescribed as in the OBST or VENT groups, with the possibility that 0, 2, or 4 out of the 6
values be the same to indicate a volume, plane or line, respectively. A handy trick is to specify, for example,
PBY=5.3 instead of XB if it is desired that the entire plane y = 5.3 slicing through the domain be saved. PBX
and PBZ control planes perpendicular to the x and z axes, respectively.

By default, 1-D and 2-D slice files are saved NFRAMES times per simulation. You can control the
frequency of output with DT_SLCF on the DUMP line. If the “slice” is a 3-D volume, then its output frequency
is controlled by the parameter DT_SL3D. By default, FDS sets DT_SL3D=(T_END-T_BEGIN)/5. You may
specify a different value of DT_SL3D on DUMP. Note that 3-D slice files can become extremely large if
DT_SL3D is small.

Animated vectors can be created in Smokeview if a given SLCF line has the attribute VECTOR=.TRUE. If
two SLCF entries are in the same plane, then only one of the lines needs to have VECTOR=.TRUE.Otherwise,
a redundant set of velocity component slices will be created.
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Normally, FDS averages slice file data at cell corners. For example, gas temperatures are computed at
cell centers, but they are linearly interpolated to cell corners and output to a file that is read by Smokeview.
To prevent this from happening, set CELL_CENTERED=.TRUE. This forces FDS to output the actual cell-
centered data with no averaging. Note that this feature is mainly useful for diagnostics because it enables
you to visualize the values that FDS actually computes. Note also that this feature should only be used for
scalar quantities that are computed at cell centers, like temperatures, mass fractions, etc.

Slice file information is recorded in files (See Section 21.7) labeled CHID_n.sf, where n is the index of
the slice file. A short Fortran program fds2ascii.f90 produces a text file from a line, plane or volume of
data. See Section 17.11 for more details.

By default, Smokeview will blank slice file data inside obstructions. However, this is expensive to
load at startup in Smokeview for large cases. If you wish Smokeview not to store this blanking array, set
IBLANK_SMV=.FALSE. on MISC. Another option is to run Smokeview from the command line and to add
-noblank as an option.

17.5 Animated Boundary Quantities: The BNDF Namelist Group

The BNDF (“boundary file”) namelist group parameters allows you to record surface quantities at all solid
obstructions. As with the SLCF group, each quantity is prescribed with a separate BNDF line, and the output
files are of the form CHID_n.bf. No physical coordinates need be specified, however, just QUANTITY. See
Table 17.3. For certain output quantities, additional parameters need to be specified via the PROP namelist
group. In such cases, add the character string, PROP_ID, to the BNDF line to tell FDS where to find the
necessary extra information.

Note that BNDF files (Section 21.9) can become very large, so be careful in prescribing the time interval,
DT_BNDF on the DUMP line. One way to reduce the size of the output file is to turn off the drawing of
boundary information on desired obstructions. On any given OBST line, if the string BNDF_OBST=.FALSE.
is included, the obstruction is not colored. To turn off all boundary drawing, set BNDF_DEFAULT=.FALSE.
on the MISC line. Then individual obstructions can be turned back on with BNDF_OBST=.TRUE. on the
appropriate OBST line. Individual faces of a given obstruction can be controlled via BNDF_FACE(IOR),
where IOR is the index of orientation (+1 for the positive x direction, -1 for negative, and so on). Normally,
FDS averages boundary file data at cell corners. For example, surface temperatures are computed at the
center of each surface cell, but they are linearly interpolated to cell corners and output to a file that is read by
Smokeview. To prevent this from happening, set CELL_CENTERED=.TRUE. on the BNDF line. This forces
FDS to output the actual cell-centered data with no averaging. Note that this feature is mainly useful for
diagnostics.

Sometimes it is useful to render the QUANTITY integrated over time. For example, a heat flux in units of
kW/m2 can be integrated in time producing the total energy absorbed by the surface in units of kJ/m2. To do
this, set STATISTICS equal to ’TIME INTEGRAL’ on the BNDF line. Note that there are no other options
for STATISTICS on a BNDF line.

17.6 Animated Isosurfaces: The ISOF Namelist Group

The ISOF (“ISOsurface File”) namelist group creates three-dimensional animated contours of gas phase
scalar quantities. For example, a 300 ◦C temperature isosurface is a 3-D surface on which the gas tempera-
ture is 300 ◦C. Three different values of the temperature can be saved via the line:

&ISOF QUANTITY='TEMPERATURE', VALUE(1)=50., VALUE(2)=200., VALUE(3)=500. /
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where the values are in ◦C. Note that the isosurface output files CHID_n.iso can become very large, so
experiment with different sampling rates (DT_ISOF on the DUMP line).

Any gas phase quantity can be animated via iso-surfaces, but use caution. To render an iso-surface,
the desired quantity must be computed in every mesh cell at every output time step. For quantities like
’TEMPERATURE’, this is not a problem, as FDS computes it and saves it anyway. However, species volume
fractions demand substantial amounts of time to compute at each mesh cell. Remember to include the
SPEC_ID corresponding to the given QUANTITY if necessary.

17.7 Plot3D Static Data Dumps

Data stored in Plot3D [38] files use a format developed by NASA that is used by many CFD programs
for representing simulation results. See Section 21.8 for a description of the file structure. Plot3D data is
visualized in three ways: as 2-D contours, vector plots and iso-surfaces. Vector plots may be viewed if one
or more of the u, v and w velocity components are stored in the Plot3D file. The vector length and direction
show the direction and relative speed of the fluid flow. The vector colors show a scalar fluid quantity such
as temperature. Five quantities are written out to a file at one instant in time. The default specification is:

&DUMP ..., PLOT3D_QUANTITY(1:5)='TEMPERATURE',
'U-VELOCITY','V-VELOCITY','W-VELOCITY','HRRPUV' /

It’s best to leave the velocity components as is, because Smokeview uses them to draw velocity vec-
tors. If any of the specified quantities require the additional specification of a particular species, use
PLOT3D_SPEC_ID(n) to provide the SPEC_ID for PLOT3D_QUANTITY(n).

Plot3D data are stored in files with extension .q . There is an optional file that can be output with
coordinate information if another visualization package is being used to render the files. If you write
WRITE_XYZ=.TRUE. on the DUMP line, a file with suffix .xyz is written out. Smokeview does not require
this file because the coordinate information can be obtained elsewhere.

Past versions of FDS (1-5) output Plot3D files by default. Now, you must specify the time interval
between dumps using DT_PL3D on the DUMP line.

17.8 SMOKE3D: Realistic Smoke and Fire

When you do a fire simulation, FDS automatically creates two output files that are rendered by Smokeview
as realistic looking smoke and fire. By default, the output quantities are the ’MASS FRACTION’ of ’SOOT’
and ’HRRPUV’ (Heat Release Rate Per Unit Volume). You have the option of rendering any other species
mass fraction instead of ’SOOT’, so long as the MASS_EXTINCTION_COEFFICIENT on the SPEC line is
appropriate in describing the attenuation of visible light by the specified gas species.

An alternative to SOOT mass fraction can be specified via SMOKE3D_QUANTITY on the DUMP line. If the
specified quantity requires the additional specification of a particular species, use SMOKE3D_SPEC_ID to
provide the SPEC_ID. Here is an example of how to change the smoke species. Normally, you do not need
to do this as the “smoke” is an assumed part of the default combustion model when a non-zero SOOT_YIELD
is defined on the REAC line.

&SPEC ID='MY SMOKE', MW=29., MASS_EXTINCTION_COEFFICIENT=8700. /
&DUMP SMOKE3D_QUANTITY='MASS FRACTION', SMOKE3D_SPEC_ID='MY SMOKE' /

The MASS_EXTINCTION_COEFFICIENT is passed to Smokeview to be used for visualization.
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17.9 Particle Output Quantities

This section discusses output options for Lagrangian particles.

17.9.1 Liquid Droplets that are Attached to Solid Surfaces

Liquid droplets (as opposed to solid particles) “stick” to solid surfaces unless directed otherwise. There
are various quantities that describe these populations. For example, ’MPUA’ is the Mass Per Unit Area of
the droplets defined by PART_ID. Likewise, ’AMPUA’ is the Accumulated Mass Per Unit Area. Both of
these are given in units of kg/m2. Think of these outputs as measures of the instantaneous mass density
per unit area, and the accumulated total, respectively. These quantities are not identical measures. The
quantity ’AMPUA’ is analogous to a “bucket test,” where the droplets are collected in buckets and the total
mass determined at the end of a given time period. In this case each grid cell on the floor is considered its
own bucket. Each droplet is counted only once when it reaches the floor1. MPUA counts a droplet whenever
it is on any solid surface, including the walls. If the droplet moves from one solid wall cell to another, it
will be counted again. The cooling of a solid surface by droplets of a given type is given by ’CPUA’, the
Cooling Per Unit Area in units of kW/m2. Since a typical sprinkler simulation only tracks a small fraction
of the droplets emitted from a sprinkler, both MPUA and CPUA also perform an exponential smoothing. This
avoids having spotted distributions on surfaces due to the infrequent arrival of droplets that likely have a
high weighting factor.

Each of the output quantities mentioned above has a variant in which the quantity is summed by species
rather than particle type. For example, the quantity ’AMPUA_Z’ along with a specified SPEC_ID rather than
a PART_ID will sum the given output quantity over all particle classes with the given SPEC_ID.

As an example of how to use these kinds of output quantities, the test case bucket_test_1 describes
a single sprinkler mounted 10 cm below a 5 m ceiling. Water flows for 30 s at a constant rate of 180 L/min
(ramped up and down in 1 s). The simulation continues for another 10 s to allow water drops time to reach
the floor. The total mass of water discharged is

180
L

min
×1

kg
L
× 1

60
min

s
×30 s = 90 kg (17.2)

In the simulation, the quantity ’AMPUA’ with STATISTICS=’SURFACE INTEGRAL’ is specified on the
DEVC line. This results in FDS summing ’AMPUA’ over each grid cell in the volume defined by XB, in this
case the entire floor, analogous to if there were an single bucket present that was the same size as the area
specified with XB. Summing the values of ’AMPUA’ over the entire floor yields a total of 90 kg (Fig. 17.1).
Note that there really is no need to time-average the results. The quantity is inherently accumulating.

17.9.2 Solid Particles on Solid Surfaces

If you want to monitor the accumulation of solid particles that have fallen on a solid surface, use a device as
follows:

&DEVC ID=..., XB=..., QUANTITY='MPUV', PART_ID='rods', STATISTICS='VOLUME INTEGRAL' /

The volume over which to integrate, XB, should be at least one grid cell thick above the surface.

1Be aware of the fact that the default behavior for liquid droplets hitting the “floor,” that is, the plane z = ZMIN, is to disappear
(POROUS_FLOOR=.TRUE. on the MISC line). In this case, ’MPUA’ will be zero, but ’AMPUA’ will not. FDS stores the
droplet mass just before removing the droplet from the simulation for the purpose of saving CPU time.
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Figure 17.1: Accumulated water collected at the floor in the bucket_test_1 case.

17.9.3 Droplet and Particle Densities and Fluxes in the Gas Phase

Away from solid surfaces, ’MPUV’ is the Mass Per Unit Volume of particles or droplets of type (PART_ID)
in units of kg/m3. ’MPUV_Z’ provides the same information integrated over all droplets of a single species,
(SPEC_ID).

The quantities ’PARTICLE FLUX X’, ’PARTICLE FLUX Y’, and ’PARTICLE FLUX Z’ produce slice
and Plot3D colored contours of the mass flux of particles in the x, y, and z directions, respectively, in units of
kg/m2/s. You can also apply these quantities to a device. For example, in the case called bucket_test_4.fds,
the input line

&DEVC XB=..., ID='flux', QUANTITY='PARTICLE FLUX Z', STATISTICS='AREA INTEGRAL' /

records the integrated mass flux of all particles passing through the given horizontal plane. Figure 17.2
presents the results of this simple test case in which water spraying at a rate of 0.0005 kg/s for 55 s passes
through a measurement plane and onto the floor. The total water accumulated is 0.0275 kg.
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Figure 17.2: Mass flux and accumulated water collected at the floor in the bucket_test_4 case.
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17.9.4 Coloring Particles and Droplets in Smokeview

The parameter QUANTITIES on the PART line is an array of character strings indicating which scalar quan-
tities should be used to color particles and droplets in Smokeview. The choices are
’PARTICLE TEMPERATURE’ (◦C)
’PARTICLE DIAMETER’ (µm)
’PARTICLE VELOCITY’ (m/s)
’PARTICLE MASS’ (kg)
’PARTICLE AGE’ (s)
By default, if no QUANTITIES are specified and none are selected in Smokeview, then Smokeview will
display particles with a single color. To select this color specify either RGB or COLOR. By default, water
droplets are colored blue. All others are colored black.

For solid particles with a specified SURF_ID, you may specify any of the solid phase output quantities
listed in Table 17.3. If the specified quantity is associated with a species, use the parameter
QUANTITIES_SPEC_ID(N) to specify the species. Here N refers to the order of the specified output quan-
tities on the PART line.

17.9.5 Detailed Properties of Solid Particles

You may output properties of a single solid particle using a DEVC (device) line. For example, the lines:

&INIT ID='my particle', PART_ID='...', XB=..., N_PARTICLES=1 /
&DEVC ID='...', INIT_ID='my particle', QUANTITY='WALL TEMPERATURE' /

output the surface temperature of a single particle that has been introduced into the simulation via an INIT

line.
If the particle is split (by means of multiple ORIENTATION vectors on the PART line), you can specify

which of the particle fragments you want using the parameter ORIENTATION_NUMBER on the DEVC line.
If the INIT line has a MULT_ID; that is, an array of particles is introduced via this single INIT line, then

the INIT_ID for each takes the form ’[ID]-00308’, where ID is that of the INIT line, and 308 refers to
the 308-th INIT line generated by the multiplicative sequence. The INIT lines are generated by looping
over the x indices, then y, then z. For example, the following input lines

&INIT ID='P', PART_ID='CRIB1', XYZ=0.005,0.005,0.005 ,
N_PARTICLES=1, CELL_CENTERED=.TRUE., MULT_ID='array' /

&MULT ID='array', DX=0.01, DY=0.01, DZ=0.01, I_LOWER=0, I_UPPER=9,
J_LOWER=0, J_UPPER=9, K_LOWER=0, K_UPPER=3 /

&DEVC ID='T307', INIT_ID='P-00307', QUANTITY='WALL TEMPERATURE' /

specify an array of 10 by 10 by 4 particles. We want to record the surface temperature of the 307-th particle.
See Section 7.5 for details of how the MULT line is interpreted.

17.10 Special Output Quantities

This section lists a variety of output quantities that are useful for studying thermally-driven flows, com-
bustion, pyrolysis, and so forth. Note that some of the output quantities can be produced in a variety of
ways.

222



17.10.1 Heat Release Rate

Quantities associated with the overall energy budget are reported in the comma delimited file CHID_hrr.csv.
This file is automatically generated; the only input parameter associated with it is DT_HRR on the DUMP line.
The columns in this file record the time history of the integrals of the terms in the enthalpy transport equa-
tion. The columns are defined as follows:

∂
∂ t

∫
ρhs dV︸ ︷︷ ︸

Q_ENTH

= ṁbhs,b−
∫

ρuhs · dS︸ ︷︷ ︸
Q_CONV

+ q̇b,w +
∫

k∇T · dS︸ ︷︷ ︸
Q_COND

+ ∑
α

∫
hs,α ρDα∇Yα · dS︸ ︷︷ ︸
Q_DIFF

+ q̇b,r−
∫

q̇′′r · dS︸ ︷︷ ︸
Q_RADI

+
∫

q̇′′′ dV︸ ︷︷ ︸
HRR

+
∫ d p

dt
dV︸ ︷︷ ︸

Q_PRES

+ (−q̇b,c− q̇b,r− q̇b,w)︸ ︷︷ ︸
Q_PART

(17.3)

An additional column, Q_TOTAL, includes the sum of the terms on the right hand side of the equation.
Ideally, this sum should equal the term on the left, Q_ENTH. All terms are reported in units of kW. Note that
the terms that make up Q_PART are summed over the Lagrangian particles. They represent the heat absorbed
by the particles via convection, radiation, and conduction from the wall.

The other columns in the file contain the total burning rate of fuel, in units of kg/s, and the zone pres-
sures. Note that the reported value of the burning rate is not adjusted to account for the possibility that each
individual material might have a different heat of combustion. For this reason, it is not always the case that
the reported total burning rate multiplied by the gas phase heat of combustion is equal to the reported heat
release rate.

Note that the volume integrations in Eq. (17.3) are performed over the entire domain. The differential,
dV , is the product of the local grid cell dimensions, dx dy dz. For the special case of two-dimensional
cylindrical coordinates, dV = r dr dθ dz, where r = x, dr = dx, and dθ = dy.

As a test of the energy balance, a sample case called Pressure_Solver/hallways.fds simulates a
fire near the end of five connected hallways. The other end of the hallways is open. As is seen in Fig. 17.3,
the quantities Q_ENTH and Q_TOTAL are very closely matched, indicating that the sources of energy loss
and gain are properly added and subtracted from the energy equation. As expected, the net energy gain/loss
eventually goes to zero as the compartment reaches a quasi-steady state.
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Figure 17.3: The energy budget for the hallways test case.
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17.10.2 Visibility and Obscuration

If you are performing a fire calculation using the simple chemistry approach, the smoke is tracked along
with all other major products of combustion. The most useful quantity for assessing visibility in a space is
the light extinction coefficient, K [39]. The intensity of monochromatic light passing a distance L through
smoke is attenuated according to

I/I0 = e−KL (17.4)

The light extinction coefficient, K, is a product of the density of smoke particulate, ρYS, and a mass specific
extinction coefficient that is fuel dependent

K = Km ρ YS (17.5)

Devices that output a % obscuration such as a DEVC with a QUANTITY of ’ASPIRATION’, ’CHAMBER
OBSCURATION’ (smoke detector), or ’PATH OBSCURATION’ (beam detector) are discussed respectively in
Section 16.3.7, Section 16.3.5, and Section 16.3.6.

Estimates of visibility through smoke can be made by using the equation

S =C/K (17.6)

where C is a non-dimensional constant characteristic of the type of object being viewed through the smoke,
i.e., C = 8 for a light-emitting sign and C = 3 for a light-reflecting sign [39]. Since K varies from point to
point in the domain, the visibility S does as well.

Three parameters control smoke production and visibility. The first is the SOOT_YIELD on the REAC

line, defined as the fraction of fuel mass that is converted to soot if the simple chemistry approach is being
used. The second parameter, MASS_EXTINCTION_COEFFICIENT, is the Km in Eq. (17.5). It is defined on
one or more of the SPEC lines2 for the various light absorbing gas species. Its default value is 8700 m2/kg, a
value suggested for flaming combustion of wood and plastics3. The third parameter, VISIBILITY_FACTOR
on the MISC line, is the constant C in Eq. (17.6). It is 3 by default.

The gas phase output quantity ’EXTINCTION COEFFICIENT’ is K. A similar quantity is the ’OPTICAL
DENSITY’, D = K/2.3, the result of using log10 in the definition

D≡−1
L

log10

(
I
I0

)
= K log10 e (17.7)

The visibility S is output via the QUANTITY called ’VISIBILITY’. Note that, by default, the visibility is
associated with the smoke that is implicitly defined by the simple chemistry model. However, this quantity
can also be associated with an explicitly defined species via the inclusion of a SPEC_ID. In other words, you
can specify the output quantity ’VISIBILITY’ along with a SPEC_ID. This does not require that you do a
simple chemistry calculation; only that you have specified the given species via a separate SPEC line. You
can specify a unique MASS_EXTINCTION_COEFFICIENT on the SPEC line as well.

Note that FDS cannot report a visibility of infinity, but rather reports a MAXIMUM_VISIBILITY that you
can control via the MISC line. The default is 30 m.

2When using the simple chemistry combustion model, you can change the default mass extinction coefficient
by adding a line to the input file of the form: &SPEC ID=’SOOT’, MASS_EXTINCTION_COEFFICIENT=...,
LUMPED_COMPONENT_ONLY=.TRUE. /

3For most flaming fuels, a suggested value for Km is 8700 m2/kg ± 1100 m2/kg at a wavelength of 633 nm [40]
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17.10.3 Layer Height and the Average Upper and Lower Layer Temperatures

Fire protection engineers often need to estimate the location of the interface between the hot, smoke-laden
upper layer and the cooler lower layer in a burning compartment. Relatively simple fire models, often re-
ferred to as two-zone models, compute this quantity directly, along with the average temperature of the upper
and lower layers. In a computational fluid dynamics (CFD) model like FDS, there are not two distinct zones,
but rather a continuous profile of temperature. Nevertheless, there are methods that have been developed
to estimate layer height and average temperatures from a continuous vertical profile of temperature. One
such method [41] is as follows: Consider a continuous function T (z) defining temperature T as a function
of height above the floor z, where z = 0 is the floor and z = H is the ceiling. Define Tu as the upper layer
temperature, Tl as the lower layer temperature, and zint as the interface height. Compute the quantities:

(H− zint) Tu + zint Tl =
∫ H

0
T (z) dz = I1

(H− zint)
1
Tu

+ zint
1
Tl

=
∫ H

0

1
T (z)

dz = I2

Solve for zint:

zint =
Tl (I1 I2−H2)

I1 + I2 T 2
l −2Tl H

(17.8)

Let Tl be the temperature in the lowest mesh cell and, using Simpson’s Rule, perform the numerical integra-
tion of I1 and I2. Tu is defined as the average upper layer temperature via

(H− zint) Tu =
∫ H

zint

T (z) dz (17.9)

Further discussion of similar procedures can be found in Ref. [42].
The quantities ’LAYER HEIGHT’, ’UPPER TEMPERATURE’ and ’LOWER TEMPERATURE’ can be des-

ignated via DEVC lines in the input file. For example, the line:

&DEVC XB=2.0,2.0,3.0,3.0,0.0,3.0, QUANTITY='LAYER HEIGHT', ID='whatever' /

produces a time history of the smoke layer height at x = 2 and y = 3 between z = 0 and z = 3. If multiple
meshes are being used, the vertical path cannot cross mesh boundaries.

17.10.4 Thermocouples

The output quantity THERMOCOUPLE is the temperature of a modeled thermocouple. The thermocouple
temperature lags the true gas temperature by an amount determined mainly by its bead size. It is found by
solving the following equation for the thermocouple temperature, TTC [43]

ρTC cTC
dTTC

dt
= εTC (U/4−σT 4

TC)+h(Tg−TTC) = 0 (17.10)

where εTC is the emissivity of the thermocouple, U is the integrated radiative intensity, Tg is the true gas
temperature, and h is the heat transfer coefficient to a small sphere, h = k Nu/DTC. The bead DIAMETER,
EMISSIVITY, DENSITY, and SPECIFIC_HEAT are given on the associated PROP line. To over-ride the
calculated value of the heat transfer coefficient, set HEAT_TRANSFER_COEFFICIENT on the PROP line
(W/(m ·K)). The default value for the bead diameter is 0.001 m. The default emissivity is 0.85. The default
values for the bead density and specific heat are that of nickel; 8908 kg/m3 and 0.44 kJ/kg/K, respectively.
See the discussion on heat transfer to a water droplet in the Technical Reference Guide for details of the
convective heat transfer to a small sphere.
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17.10.5 Heat Flux

There are various output quantities related to heat flux. First, consider the net heat flux to a solid surface:

q̇′′net = εs
(
q̇′′inc,rad−σ T 4

s
)
+h(Tgas−Ts) (17.11)

where q̇′′inc,rad is the incident radiative heat flux, εs is the surface emissivity, h is the convective heat transfer
coefficient, Ts is the surface temperature, and Tgas is the gas temperature in the vicinity of the surface. If you
want to output the net heat flux, use the QUANTITY called ’NET HEAT FLUX’. The individual components,
the net convective and radiative fluxes, are ’CONVECTIVE HEAT FLUX’ and ’RADIATIVE HEAT FLUX’,
respectively. If you just want to output q̇′′inc,rad, use ’INCIDENT HEAT FLUX’.

If you want to compare the heat flux predicted by FDS to a measurement made with a heat flux gauge,
use ’GAUGE HEAT FLUX’:

q̇′′gauge = εgauge
(
q̇′′inc,rad−σ T 4

gauge
)
+h(Tgas−Tgauge) (17.12)

If the heat flux gauge used in an experiment has a temperature other than ambient or an emissivity other than
1, use GAUGE_TEMPERATURE (Tgauge) and GAUGE_EMISSIVITY (εgauge) on the PROP line associated with
the device:

&DEVC ID='hf', XYZ=..., IOR=-2, QUANTITY='GAUGE HEAT FLUX', PROP_ID='hf props' /
&PROP ID='hf props', GAUGE_TEMPERATURE=80., GAUGE_EMISSIVITY=0.9 /

The heat transfer coefficient, h, is that of the solid surface to which the device is attached.
Similar to a heat flux gauge, a ’RADIOMETER’ measures only the radiative heat flux:

q̇′′radiometer = εgauge
(
q̇′′inc,rad−σ T 4

gauge
)

(17.13)

The GAUGE_TEMPERATURE (Tgauge) and GAUGE_EMISSIVITY (εgauge) can be set on the PROP line associated
with the device if their values are different than ambient and 1, respectively.

All of the above heat flux output quantities are defined at a solid surface. To record the radiative heat
flux away from a solid surface, add a device with the following format:

&DEVC ID='flux', QUANTITY='RADIATIVE HEAT FLUX GAS', XYZ=..., ORIENTATION=-1,0,0 /

Note that XB and STATISTICS are not appropriate for this quantity. This single line of input is a special
shortcut4 for the following lines of input that make use of a Lagrangian particle as a surrogate target:

&DEVC ID='flux', INIT_ID='f1', QUANTITY='RADIATIVE HEAT FLUX' /
&INIT ID='f1', XYZ=..., N_PARTICLES=1, PART_ID='rad gauge' /
&PART ID='rad gauge', STATIC=.TRUE., ORIENTATION(1:3,1)=-1,0,0, SURF_ID='target' /
&SURF ID='target', RADIUS=0.001, GEOMETRY='SPHERICAL', EMISSIVITY=1. /

Note that the DEVC line does not contain device coordinates, but rather a reference to the INIT line that
positions the single surrogate particle at the point XYZ. The INIT line references the PART line, which
provides information about the particle, in particular the orientation of the heat flux gauge. The reference to
the SURF line is mainly for consistency – FDS needs to know something about the particle’s geometry even
though it is really just a “target.”

The functionality of surrogate particles can be extended to model an array of devices. Instead of one
heat flux gauge, we can create a line of them:

4This feature maintains backward compatibility with FDS 5.
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&DEVC ID='flux', INIT_ID='f1', POINTS=34, QUANTITY='RADIATIVE HEAT FLUX', X_ID='x' /
&INIT ID='f1', XYZ=..., N_PARTICLES=34, DX=0.05, PART_ID='rad gauge' /

For more information about specifying arrays of devices via the parameter POINTS, see Section 17.2.2. Note
also the parameter DX on the INIT line that creates a line of particles starting at the point XYZ and repeating
every 0.05 m.

17.10.6 Adiabatic Surface Temperature

FDS includes a calculation of the adiabatic surface temperature (AST), a quantity that is representative of
the heat flux to a solid surface. Following the idea proposed by Ulf Wickström [44], TAST is the surface
temperature for which the net heat flux (Eq. (17.11) is zero. The following equation can be solved using an
analytical solution given by Malendowski [45]:

ε
(
q̇′′inc,rad−σ T 4

AST

)
+h(Tgas−TAST) = 0 (17.14)

where, q̇′′inc,rad is the incident radiative heat flux onto the surface, ε is the surface emissivity, h is the convec-
tive heat transfer coefficient, and Tgas is the surrounding gas temperature.

The usefulness of the AST is that it represents an effective exposure temperature that can be passed
on to a more detailed model of the solid object. It provides the gas phase thermal boundary condition in
a single quantity, and it is not affected by the uncertainty associated with the solid phase heat conduction
model within FDS. Obviously, the objective in passing information to a more detailed model is to get a
better prediction of the solid temperature (and ultimately its mechanical response) than FDS can provide.
To reinforce this notion, you can output the adiabatic surface temperature even when there is no actual solid
surface using the following lines:

&DEVC ID='AST', XYZ=..., QUANTITY='ADIABATIC SURFACE TEMPERATURE GAS',
ORIENTATION=0.707,0.0,0.707, PROP_ID='props' /

&PROP ID='props', EMISSIVITY=0.9, HEAT_TRANSFER_COEFFICIENT=10. /

This output indicates the maximum achievable solid surface temperature at the given location XYZ that is not
actually in the vicinity of a solid surface, facing in any direction as indicated by the ORIENTATION vector.
Note that you must set the EMISSIVITY and HEAT_TRANSFER_COEFFICIENT (W/(m2·K)) on the PROP

line because there is no actual solid surface from which to infer these values.

Example: AST vs. Surface Temperature

The test case called adiabatic_surface_temperature.fds in the Radiation folder simulates a
0.1 mm steel plate being heated by a thermal plume. The plate is perfectly insulated (BACKING=’INSULATED’
on the SURF line) and its steady-state temperature should be equivalent to its adiabatic surface temperature
or AST. The left plot of Fig. 17.10.6 shows the plate temperature rising towards the AST, much as an
actual plate thermometer would. The right plot simply shows the AST calculated using the QUANTITY

’ADIABATIC SURFACE TEMPERATURE’ applied via a DEVC at the plate surface, and the AST calcu-
lated using the QUANTITY ’ADIABATIC SURFACE TEMPERATURE GAS’ applied via a DEVC positioned
just in front of the plate. The idea of the latter device would be to record the AST even if the plate
were not actually represented in the simulation. For these two recordings of the AST to be identical,
the plate SURFace conditions and the AST-Gas PROPerties must both include the same explicitly-defined
HEAT_TRANSFER_COEFFICIENT and EMISSIVITY.
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Figure 17.4: (Left) Surface temperature vs. adiabatic surface temperature of an insulated plate. (Right) AST
recorded with a device positioned on the plate surface (AST) and one just off the surface (AST-Gas).

17.10.7 Special Topic: Detailed Spray Properties

Detailed experimental measurements of sprays using Phase Doppler Particle Analysis (PDPA) provide infor-
mation on the droplet size distribution, speed and concentration. A special device type is defined via a DEVC
line to simulate the PDPA measurement. The actual quantity to measure, and the details of the measurement
are defined using an associated PROP line.

By default, the PDPA device output at time t is computed as a time integral

F(t) =
1

min(t, te)− ts

∫ min(t,te)

ts
f (t) dt (17.15)

but instantaneous values can be obtained by setting PDPA_INTEGRATE equal to .FALSE. on the corre-
sponding PROP line, in which case

F(t) = f (t) (17.16)

The function f (t) has two forms:

f1(t) =
(

∑i niDm
i φ

∑i niDn
i

) 1
m−n

; f2(t) =
∑i ni φ

V
(17.17)

where ni is the number of real particles represented by the single simulated particle, Di is the particle
diameter, and φ is the quantity to be measured. In each case, the summation goes over all the particles
within a sphere with radius PDPA_RADIUS and centered at the location given by the device XYZ.

The first form f1(t) is used for the computation of various mean diameters, with associated properties
defined using the following keywords on the PROP line:

PDPA_M m, exponent m of diameter.

PDPA_N n, exponent n of diameter. In case m = n, the exponent 1/(m−n) is removed from the formula.

The second form ( f2(t)) is used for the computation of mass and energy related variables that do not
include the diameter weighting. The concentrations are based on the sampling volume, V , defined by
PDPA_RADIUS. The quantity used for x can be chosen with the keyword QUANTITY. A summary of the
available PDPA quantities is shown in Table 17.1.
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Table 17.1: Output quantities available for PDPA.

QUANTITY φ f Unit
’DIAMETER’ (default) 1 f1 µm
’ENTHALPY’ (4/3)ρir3

i (cp,i(Ti)Ti− cp,i(Tm)Tm) f2 kJ/m3

’PARTICLE FLUX X’ (4/3)ρir3
i ui f2 kg/m2s

’PARTICLE FLUX Y’ (4/3)ρir3
i vi f2 kg/(m2 · s)

’PARTICLE FLUX Z’ (4/3)ρir3
i wi f2 kg/(m2 · s)

’U-VELOCITY’ ui f1 m/s
’V-VELOCITY’ vi f1 m/s
’W-VELOCITY’ wi f1 m/s
’VELOCITY’ (u2

i + v2
i +w2

i )
1
2 f1 m/s

’TEMPERATURE’ Ti f1
◦C

’MASS CONCENTRATION’ (4/3)ρr3
i f2 kg/m3

’NUMBER CONCENTRATION’ 1 f2

∗ Tm is the melting temperature of the associated species.

It is also possible to output histograms of PDPA output quantities. When PDPA_HISTOGRAM is set
to .TRUE., normalized histogram bin counts are output to a comma-separated value (.csv) file from all
devices associated with this PROP line. The number of bins and the limits of the histogram are controlled by
parameters on the PROP line. The value used in creating the histogram is Dm

i φ . Note that when making a
histogram of diameters, the limits must be given in meters, not microns. Values falling outside the histogram
limits are included in the counts of the first and last bins. Cumulative distributions can be output by setting
PDPA_HISTOGRAM_CUMULATIVE=.TRUE. on the PROP line. To output unnormalized counts or cumulative
distribution, set PDPA_NORMALIZE to .FALSE.. Note, however, that the counts correspond to the super
droplets/particles, not the numerical ones. Due to the stratified sampling technique used (see Section 15.3.3),
the counts are not necessarily integers.

The histogram output file contains of two-columns for each device. The first column gives the bin
centers, and the second column gives the normalized bin count. The bin counts are normalized so that the
total area of the histogram is 1. Here the histogram consists of equal width bars centered at the given bin
centers and heights equal to the corresponding bin count. Volume and area based distributions can be output
by setting the PDPA_N parameter on the PROP line to 3 and 2 respectively. Notice that this works differently
from the mean diameter computation where the weighting is based on the PDPA_M parameter.

The properties of the PDPA device are defined using the following keywords on the PROP line:

PART_ID Name of the particle group to limit the computation to. Do not specify to account for all particles.

PDPA_START ts, starting time of time integration in seconds. PDPA output is always a running average over
time. As the spray simulation may contain some initial transient phase, it may be useful to specify the
starting time of data collection.

PDPA_END te, ending time of time integration in seconds.

PDPA_INTEGRATE A logical parameter for choosing between time integrated or instantaneous values.
.TRUE. by default.

PDPA_RADIUS Radius (m) of the sphere, centered at the device location, inside which the particles are
monitored.
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PDPA_NORMALIZE Can be set .FALSE. to force V = 1 in the formula for f2(t), or to unnormalize the
histogram output.

QUANTITY Specified on PROP line for choosing the variable φ .

PDPA_HISTOGRAM_NBINS Number of bins used for the histogram.

The following example is used to measure the Sauter mean diameter, D32, of the particle type ’water

drops’, starting from time 5 s.

&PROP ID='pdpa_d32'
PART_ID='water drops'
PDPA_M=3
PDPA_N=2
PDPA_RADIUS=0.01
PDPA_START=5. /

&DEVC XYZ=0.0,0.0,1.0, QUANTITY='PDPA', PROP_ID='pdpa_d32' /

The following example is used to write out a histogram of droplet size using 20 equally sized bins between
0 and 2000 µm.

&PROP ID='pdpa_d'
PART_ID='water drops'
QUANTITY="DIAMETER"
PDPA_RADIUS=0.01
PDPA_START=0.0
PDPA_M=1
PDPA_HISTOGRAM=.TRUE.
PDPA_HISTOGRAM_NBINS=20
PDPA_HISTOGRAM_LIMITS=0,2000E-6 /

&DEVC XYZ=0.0,0.0,1.0, QUANTITY='PDPA', PROP_ID='pdpa_d' /

17.10.8 Useful Solid Phase Outputs

In addition to the profile (PROF) output, there are various additional quantities that are useful for monitoring
reacting surfaces. For example, ’WALL THICKNESS’ gives the overall thickness of the solid surface ele-
ment. ’SURFACE DENSITY’ gives the overall mass per unit area for the solid surface element, computed
as an integral of material density over wall thickness. Both quantities are available both as DEVC and BNDF.

Thermogravimetric Analysis (TGA) Output

Thermogravimetric Analysis or TGA is a bench-scale measurement in which a very small solid material
sample is heated up at a constant rate. The results of a TGA measurement are presented in the form of a
normalized mass and normalized mass loss rate. Analogous quantities can be output from FDS:

’NORMALIZED MASS’ = ∑
α

m′′α(t)
/

∑
α

m′′α(0) (dimensionless)

’NORMALIZED MASS LOSS RATE’ = ∑
α

ṁ′′α(t)
/

∑
α

m′′α(0) (1/s)
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Micro-Combustion Calorimetry (MCC) Output

Micro-Combustion Calorimetry or MCC is similar to TGA, except the vaporized gas is burned. The result
is a normalized heat release rate:

’NORMALIZED HEAT RELEASE RATE’= ṁ′′f (t)∆H
/

∑
α

m′′α(0) (W/g)

Note that ṁ′′F is the mass flux of fuel and ∆H is the heat of combustion.

Differential Scanning Calorimetry (DSC) Output

Differential Scanning Calorimetry or DSC is a measurement of the rate of heat absorption by a small material
sample under constant heating. The result is a normalized heat absorption rate:

’NORMALIZED HEATING RATE’= q̇′′c (t)
/

∑
α

m′′α(0) (W/g)

Note that it is assumed that the sample is heated purely by convection, in which case q̇′′c is the convective
heat flux.

17.10.9 Fractional Effective Dose (FED) and Fractional Irritant Concentration (FIC)

The Fractional Effective Dose index (FED), developed by Purser [46], is a commonly used measure of
human incapacitation due to the combustion gases. The FED value is calculated as

FEDtot = (FEDCO +FEDCN +FEDNOx +FLDirr)×HVCO2 +FEDO2 (17.18)

The fraction of an incapacitating dose of CO is calculated as

FEDCO =
∫ t

0
2.764×10−5 (CCO(t))1.036 dt (17.19)

where t is time in minutes and CCO is the CO concentration (ppm). The fraction of an incapacitating dose of
CN is calculated as

FEDCN =

∫ t

0

(
1

220
exp
(

CCN(t)
43

)
−0.0045

)
dt (17.20)

where t is time in minutes and CCN is the concentration (ppm) of HCN corrected for the protective effect of
NO2. CCN is calculated as

CCN =CHCN−CNO2−CNO (17.21)

The fraction of an incapacitating dose of NOx is calculated as

FEDNOx =
∫ t

0

CNOx(t)
1500

dt (17.22)

where t is time in minutes and CNOx is the sum of NO and NO2 concentrations (ppm).
The Fractional Lethal Dose (FLD) of irritants is calculated as

FLDirr =
∫ t

0

(
CHCl(t)
FFLD,HCl

+
CHBr(t)
FFLD,HBr

+
CHF(t)
FFLD,HF

+
CSO2(t)
FFLD,SO2

+
CNO2(t)
FFLD,NO2

+
CC3H4O(t)
FFLD,C3H4O

+
CCH2O(t)
FFLD,CH2O

)
dt

(17.23)
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Table 17.2: Coefficients used for the computation of irritant effects of gases.

HCl HBr HF SO2 NO2 C3H4O CH2O
FFLD (ppm × min) 114000 114000 87000 12000 1900 4500 22500
FFIC (ppm) 900 900 900 120 350 20 30

where t is time in minutes, the nominators are the instantaneous concentrations (ppm) of each irritant and
the denominators the exposure doses of respective irritants predicted to be lethal to half the population. The
lethal exposure doses [46] are given in Table 17.2. To include the effect of an irritant gas not listed in the
table, you should specify FFLD in ppm×min using the FLD_LETHAL_DOSE property of the corresponding
SPEC line.

The fraction of an incapacitating dose of low O2 hypoxia is calculated as

FEDO2 =
∫ t

0

dt
exp [8.13−0.54(20.9−CO2(t))]

(17.24)

where t is time in minutes and CO2 is the O2 concentration (volume percent). The hyperventilation factor
induced by carbon dioxide is calculated as

HVCO2 =
exp(0.1903CCO2(t)+2.0004)

7.1
(17.25)

where t is time in minutes and CCO2 is the CO2 concentration (percent).
The Fractional Irritant Concentration (FIC), also developed by Purser [46], represents the toxic effect

which depends upon the immediate concentrations of irritants. The overall irritant concentration FIC is
calculated as

FICirr =
CHCl(t)
FFIC,HCl

+
CHBr(t)
FFIC,HBr

+
CHF(t)
FFIC,HF

+
CSO2(t)
FFIC,SO2

+
CNO2(t)
FFIC,NO2

+
CC3H4O(t)
FFIC,C3H4O

+
CCH2O(t)
FFIC,CH2O

(17.26)

where the nominators are the instantaneous concentrations of each irritant and the denominators the con-
centrations of respective irritants expected to cause incapacitation in half the population. The incapacitating
concentrations [46] are given in Table 17.2. To include the irritant effect of a gas not listed in the table, you
should specify FFIC in ppm using the FIC_CONCENTRATION property on the corresponding SPEC line.

Note that the spatial integration features (Section 17.10.10) cannot be used with FED output because
FED makes use of the ’TIME INTEGRAL’ statistic (Section 17.10.11). For the same reason, FED output is
only available as a point measurement.

17.10.10 Spatially-Integrated Outputs

A useful feature of a device (DEVC) is to specify an output quantity along with a desired statistic. For
example,

&DEVC XB=..., QUANTITY='TEMPERATURE', ID='maxT', STATISTICS='MAX' /

causes FDS to write out the maximum gas phase temperature over the volume bounded by XB. Note that
it does not compute the maximum over the entire computational domain, just the specified volume, and
this volume must lie within a single mesh. Other STATISTICS are discussed below. Note that some are
appropriate for gas phase output quantities, some for solid phase, and some for both.
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For solid phase output quantities, like heat fluxes and surface temperatures, the specification of a
SURF_ID along with the appropriate statistic limits the calculation to only those surfaces. You can fur-
ther limit the search by using the sextuplet of coordinates XB to force FDS to only compute statistics for
surface cells within the given volume. Be careful to account for the fact that the solid surface might shift to
conform to the underlying numerical grid. Also, be careful not to specify a volume that extends beyond a
single mesh. Note that you do not (and should not) specify an orientation via the parameter IOR when using
a spatial statistic. IOR is only needed to find a specific point on the solid surface.

Use the STATISTICS feature with caution because it demands that FDS evaluate the given QUANTITY

in all gas or solid phase cells.

Minimum or Maximum Value

For a given gas phase scalar output quantity defined at the center of each grid cell, φi jk, STATISTICS=’MIN’
or STATISTICS=’MAX’ computes the minimum or maximum value, respectively

min
i jk

φi jk ; max
i jk

φi jk (17.27)

over the cells that are included in the specified volume bounded by XB. Note that this statistic is only ap-
propriate for gas phase quantities. Note also that you must specify a volume to sum over via the coordinate
parameters, XB, all of which must be contained within the same mesh.

Average Value

For a given gas phase scalar output quantity defined at the center of each grid cell, φi jk, STATISTICS=’MEAN’
computes the average value,

1
N ∑

i jk
φi jk (17.28)

over the cells that are included in the specified volume bounded by XB. Note that this statistic is only ap-
propriate for gas phase quantities. Note also that you must specify a volume to sum over via the coordinate
parameters, XB, all of which must be contained within the same mesh.

Volume-Weighted Mean

For a given gas phase output quantity, φ(x,y,z), STATISTICS=’VOLUME MEAN’ produces the discrete ana-
log of

1
V

∫
φ(x,y,z) dx dy dz (17.29)

which is very similar to ’MEAN’, but it weights the values according to the relative size of the mesh cell.
Note that this statistic is only appropriate for gas phase quantities. Note also that you must specify a volume
to sum over via the coordinate parameters, XB, all of which must be contained within the same mesh.

Mass-Weighted Mean

For a given gas phase output quantity, φ(x,y,z), STATISTICS=’MASS MEAN’ produces the discrete analog
of ∫

ρ(x,y,z) φ(x,y,z) dx dy dz∫
ρ dx dy dz

(17.30)

which is similar to ’VOLUME MEAN’, but it weights the values according to the relative mass of the mesh
cell. Note that this statistic is only appropriate for gas phase quantities. Note also that you must specify
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a volume to sum over via the coordinate parameters, XB, all of which must be contained within the same
mesh.

Volume Integral

For a given gas phase output quantity, φ(x,y,z), STATISTICS=’VOLUME INTEGRAL’ produces the discrete
analog of ∫

φ(x,y,z) dx dy dz (17.31)

Note that this statistic is only appropriate for gas phase quantities, in particular those whose units involve
m−3. For example, heat release rate per unit volume is an appropriate output quantity. Note also that you
must specify a volume to sum over via the coordinate parameters, XB, all of which must be contained within
the same mesh.

Mass Integral

For a given gas phase output quantity, φ(x,y,z), STATISTICS=’MASS INTEGRAL’ produces the discrete
analog of ∫

ρ(x,y,z) φ(x,y,z) dx dy dz (17.32)

Note that this statistic is only appropriate for gas phase quantities. Note also that you must specify a volume
to sum over via the coordinate parameters, XB, all of which must be contained within the same mesh.

Area Integral

For a given gas phase output quantity, φ(x,y,z), STATISTICS=’AREA INTEGRAL’ produces the discrete
analog of ∫

φ(x,y,z) dA (17.33)

where dA depends on the coordinates you specify for XB. Note that this statistic is only appropriate for gas
phase quantities, in particular those whose units involve m−2. For example, the quantity ’MASS FLUX X’

along with SPEC_ID=’my gas’ is an appropriate output quantity if you want to know the mass flux of the
gas species that you have named ’my gas’ through an area normal to the x direction. Note also that you
must specify an area to sum over via the coordinate parameters, XB, all of which must be contained within
the same mesh.

Surface Integral

For a given solid phase output quantity, φ , STATISTICS=’SURFACE INTEGRAL’ produces the discrete
analog of ∫

φ dA (17.34)

Note that this statistic is only appropriate for solid phase quantities, in particular those whose units involve
m−2. For example, the various heat and mass fluxes are appropriate output quantities.
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Limiting the Integration

The input parameter QUANTITY_RANGE can be used to limit the region of integration for STATISTICS
types of ’AREA INTEGRAL’, ’VOLUME INTEGRAL’, ’MASS INTEGRAL’, and ’SURFACE INTEGRAL’.
If QUANTITY_RANGE is set, the integration will only be performed if the value of the QUANTITY lies within
the QUANTITY_RANGE where QUANTITY_RANGE(1) is the lower bound and QUANTITY_RANGE(2) is the
upper bound. For example:

&DEVC XB=..., QUANTITY='MASS FRACTION', SPEC_ID='METHANE', STATISTICS='MASS
INTEGRAL', QUANTITY_RANGE=0.03,0.15/

would output the total mass of methane in the volume XB where the mass fraction was between 0.03 and
0.15.

A set of additional STATISTICS are available for use with QUANTITY_RANGE: ’AREA’, ’MASS’,
’VOLUME’, and ’SURFACE AREA’. These STATISTICS output the area, mass, volume, or surface area
(for a solid phase quantity) where the QUANTITY lies within the QUANTITY_RANGE. For example:

&DEVC XB=..., QUANTITY='NET HEAT FLUX', STATISTICS='SURFACE AREA',
QUANTITY_RANGE(1)=10./

would output the total surface area in the volume XB where the net heat flux exceeds 10 kW/m2.

Volume, Mass, and Heat Flow

The net flow of mass and energy into or out of a planar surface can be a useful diagnostic. There are several
outputs that address these. All are prescribed via the device (DEVC) namelist group only. For example:

&DEVC XB=0.3,0.5,2.1,2.5,3.0,3.0, QUANTITY='MASS FLOW', ID='whatever' /

outputs the net integrated mass flux through the given planar area, oriented in the positive z direction, in this
case. The three flows ’VOLUME FLOW’, ’MASS FLOW’, and ’HEAT FLOW’ are defined:

V̇ =
∫

u · dS (17.35)

ṁ =
∫

ρu · dS (17.36)

q̇ =
∫

ρcp(T −T∞)u · dS (17.37)

The addition of a + or - to the QUANTITY names yields the integral of the flow in the positive or negative
direction only. In other words, if you want to know the mass flow out of a compartment, use ’MASS FLOW

+’ or ’MASS FLOW -’, depending on the orientation of the door.

Volume, Mass, and Heat Flow at a Wall

The quantities ’VOLUME FLOW’, ’MASS FLOW’, and ’HEAT FLOW’ cannot be applied at a solid bound-
ary. Instead, use the wall equivalents ’VOLUME FLOW WALL’, ’MASS FLOW WALL’, and ’HEAT FLOW

WALL’. These quantities require an IOR for the surface (positive points into the domain). If you want the
mass flow of a particular gas species, include the SPEC_ID of that gas species. Note that, in order to be
a more useful diagnostic for global energy balances, the heat flow at the wall is defined using the sensible
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enthalpy of the mixture (composition taken at the wall) and is not relative to ambient conditions:

q̇w =
∫

ρhs(T )u · dS (17.38)

17.10.11 Temporally-Integrated Outputs

In addition to the spatial statistics, a time integral of an DEVC output can be computed by specifying
STATISTICS = ’TIME INTEGRAL’ on the DEVC line. This produces a discrete analog of∫ t

t0
φ(τ) dτ (17.39)

Note that the spatial and time integrals can not be used simultaneously.

17.10.12 Statistical Outputs

Statistical quantities can also be generated for either point or line devices. Note that these are quantities
only have significant meaning if the flow is steady-state. These quantities are estimated using a logarithmic
averaging process. The weighting coefficient for the averaging is determined by the desired time interval
for the device. For a point device this time interval is starts at STATISTICS_START on the DEVC line and
continues until T_END. For a line device is is determined by DT_DEVC_LINE on the DUMP line.

Root Mean Square

If you set STATISTICS=’RMS’ on the DEVC line, the output will be an unbiased estimate of the root mean
square value:

φrms =

√
∑

n
i=1(φi−φ)2

n−1
(17.40)

Covariance

If u =U−U and v =V −V are the deviations for two random variables, U and V , then an unbiased estimate
of the covariance is given by

uv =
∑

n
i=1(Ui−U)(Vi−V )

n−1
(17.41)

To output this statistic you must add a QUANTITY2 to the device line and set STATISTICS=’COV’. The
following lines would create a line of devices and a single point device equivalent to the first point in the
line:

&DUMP DT_DEVC_LINE=20/
&DEVC XB=X1,X2,Y1,Y2,Z1,Z2, QUANTITY='CELL W', QUANTITY2='TEMPERATURE',

STATISTICS='COV', ID='wT-cov_line', POINTS=20/
&DEVC XYZ=X1,Y1,Z1, QUANTITY='CELL W', QUANTITY2='TEMPERATURE',

STATISTICS='COV', ID='wT-cov_point', STATISTICS_DT=20/
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Correlation Coefficient

Setting STATISTICS=’CORRCOEF’ outputs the correlation coefficient given by

ρuv =
uv

urms vrms
(17.42)

Here again you must add a QUANTITY2 to the device line.

17.10.13 Wind and the Pressure Coefficient

In the field of wind engineering, a commonly used quantity is known as the PRESSURE_COEFFICIENT:

Cp =
p− p∞

1
2 ρ∞U2

(17.43)

p∞ is the ambient, or “free stream” pressure, and ρ∞ is the ambient density. The parameter U is the free-
stream wind speed, given as CHARACTERISTIC_VELOCITY on the PROP line

&BNDF QUANTITY='PRESSURE COEFFICIENT', PROP_ID='U' /
&DEVC ID='pressure tap', XYZ=..., IOR=2, QUANTITY='PRESSURE COEFFICIENT', PROP_ID='U'

/
&PROP ID='U', CHARACTERISTIC_VELOCITY=3.4 /

Thus, you can either paint values of Cp at all surface points, or create a single time history of Cp using a
single device at a single point.

17.10.14 Near-wall Grid Resolution

Large-eddy simulations of boundary layer flows fall into two general categories: LES with near-wall reso-
lution and LES with near-wall modeling (wall functions). FDS employs the latter. The wall models used
in FDS are the Werner-Wengle wall model [47] for smooth walls and a rough wall log law for rough walls
[10]. For the wall models to function properly, the grid resolution near the wall should fall within a certain
range of y+, the nondimensional distance from the wall expressed in viscous units. To check this, you may
add a boundary file output as follows:

&BNDF QUANTITY='YPLUS' /

The value of y+ reported is half (since the velocity lives at the cell face center) the wall-normal cell dimen-
sion (δn) divided by the local viscous length scale, δν [10]:

y+ =
1
2

δn
δν

; δν =
µ/ρ
uτ

; uτ =
√

τw/ρ , (17.44)

where τw = µ ∂ |u|/∂n is the viscous stress evaluated at the wall (τw is computed by the wall function, |u|
is taken as an estimate of the streamwise velocity component near the wall); the quantity uτ is the friction
velocity. The friction velocity may also be output in a boundary file or via a device attached to a wall. For
example:

&DEVC XYZ=1,0,0, QUANTITY='FRICTION VELOCITY', IOR=3, ID='u_tau' /

Wall functions for LES are still under development, but as a general guideline it is recommended that the
first grid cell fall within the log layer: a value y+ = 30 would be considered highly resolved, the upper limit
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of the log region for statistically stationary boundary layers depends on the Reynolds number, and there are
no hard rules for transient flows. Beyond y+ = 1000 the first grid cell is likely to fall in the wake region of
the boundary layer and may produce unreliable results. A reasonable target for practical engineering LES is
y+ = O(100).

17.10.15 Dry Volume and Mass Fractions

During actual experiments, species such as CO and CO2 are typically measured “dry”; that is, the water
vapor is removed from the gas sample prior to analysis. For easier comparison of FDS predictions with mea-
sured data, you can specify the logical parameter DRY on a DEVC line that reports the ’MASS FRACTION’

or ’VOLUME FRACTION’ of a species. For example, the first line reports the actual volume fraction of CO,
and the second line reports the output of a gas analyzer in a typical experiment.

&DEVC ID='wet CO', XYZ=..., QUANTITY='VOLUME FRACTION', SPEC_ID='CARBON MONOXIDE'/
&DEVC ID='dry CO', XYZ=..., QUANTITY='VOLUME FRACTION', SPEC_ID='CARBON MONOXIDE',

DRY=.TRUE. /

17.10.16 Aerosol and Soot Concentration

Currently there are three different device options for outputting aerosol concentration (e.g., soot concentra-
tion) from FDS. It is important to recognize what each device is outputting so that the proper selection can
be made.

&DEVC ID='MF_SOOT', XYZ=..., QUANTITY='MASS FRACTION', SPEC_ID='SOOT'/
&DEVC ID='VF_SOOT', XYZ=..., QUANTITY='VOLUME FRACTION', SPEC_ID='SOOT'/
&DEVC ID='SOOT_VF', XYZ=..., QUANTITY='AEROSOL VOLUME FRACTION', SPEC_ID='SOOT'/

Specifying a DEVC with a ’MASS FRACTION’ and a SPEC_ID of SOOT will output the mass fraction of
soot in the gas phase. The quantity ’VOLUME FRACTION’ and a SPEC_ID of SOOT will output the volume
fraction of soot in the gas phase treating the soot as if it were an ideal gas. The quantity ’AEROSOL VOLUME

FRACTION’ and a SPEC_ID of SOOT will output the volume fraction of soot as if it were a solid particle in
the computational cell based on the following equation,

fv = ρYa/ρa (17.45)

where ρ is the local density, Ya is the local mass fraction of the aerosol, and ρa is density of the aerosol
defined using the SPEC input DENSITY_SOLID, which defaults to 1800 (kg/m3) for soot.

17.10.17 Gas Velocity

The gas velocity components, u, v, and w, can be output as slice (SLCF), point device (DEVC), isosurface
(ISOF), or Plot3D quantities using the names ’U-VELOCITY’, ’V-VELOCITY’, and ’W-VELOCITY’. The
total velocity is specified as just ’VELOCITY’. Normally, the velocity is always positive, but you can use
the parameter VELO_INDEX with a value of 1, 2 or 3 to indicate that the velocity ought to have the same sign
as u, v, or w, respectively. This is handy if you are comparing velocity predictions with measurements. For
Plot3D files, add PLOT3D_VELO_INDEX(N)=... to the DUMP line, where N refers to the Plot3D quantity
1, 2, 3, 4 or 5.
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17.10.18 Enthalpy

There are several outputs that report the enthalpy of the gas mixture. First, the ’SPECIFIC ENTHALPY’

and the ’SPECIFIC SENSIBLE ENTHALPY’ are defined:

h(T ) = ∆h◦f +
∫ T

Tref

cp(T ′) dT ′ ; hs(T ) =
∫ T

Tref

cp(T ′) dT ′ (17.46)

Both have units of kJ/kg. The quantities ’ENTHALPY’ and ’SENSIBLE ENTHALPY’ are ρh and ρhs, re-
spectively, in units of kJ/m3.

17.10.19 Computer Performance

There are several useful DEVC QUANTITY’s that can help monitor the performance of your computer:

’ACTUATED SPRINKLERS’ Number of activated sprinklers.

’CFL MAX’ The maximum value of the CFL (Courant-Friedrichs-Lewy) number, the primary constraint
on the time step, for the mesh in which the device is located. By default, the time step is chosen so that
the CFL number remains within the range of 0.8 to 1.0. If you want to see the CFL number in each grid
cell, use a slice (SLCF) file with QUANTITY=’CFL’ and CELL_CENTERED=.TRUE..

’CPU TIME’ Elapsed CPU time since the start of the simulation, in seconds.

’ITERATION’ Number of time steps completed at the given time of the simulation.

’NUMBER OF PARTICLES’ Number of Lagrangian particles for the MESH in which the DEVC is located.

’TIME STEP’ Duration of a simulation time step, δ t, in seconds.

’VN MAX’ The maximum value of the VN (Von Neumann) number, a secondary constraint on the time
step, for the mesh in which the device is located. By default, the time step is chosen so that the VN
number remains below 1. If you want to see the VN number in each grid cell, use a slice (SLCF) file
with QUANTITY=’VN’ and CELL_CENTERED=.TRUE..

’WALL CLOCK TIME’ Elapsed wall clock time since the start of the simulation, in seconds.

’WALL CLOCK TIME ITERATIONS’ Elapsed wall clock time since the start of the time stepping loop, in
seconds.

In addition, the following flags can be useful in monitoring the performance of an MPI calculation. They
are typically used for debugging.

VELOCITY_ERROR_FILE If set to .TRUE. on the DUMP line, this parameter will cause FDS to create a file
with a time history of the maximum error associated with the normal component of velocity at solid or
interpolated boundaries.

MPI_TIMEOUT The amount of time, in seconds, to wait for messages sent via MPI (Message Passing Inter-
face) before timing out. This parameter is set on the MISC line. The default value is 10 s. This parameter
is only useful in forcing a job with deadlocked messages to finish and print out information about the
lost message. It is very unlikely to solve a deadlock problem.
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17.10.20 Output File Precision

There are several different output files that have the format of a comma-separated value (.csv) file. These
files consist of real numbers in columns separated by commas. By default, the real numbers are formatted

-1.2345678E+123

To change the precision of the numbers, use SIG_FIGS on the DUMP line to indicate the number of significant
figures in the mantissa (default is 8). Use SIG_FIGS_EXP to change the number of digits in the exponent
(default is 3). Keep in mind that the precision of real numbers used internally in an FDS calculation is
approximately 12, equivalent to 8 byte or double precision following conventional Fortran rules.

17.10.21 A Posteriori Mesh Quality Metrics

The quality of a particular simulation is most directly tied to grid resolution. Three output quantities are
discussed here for measuring errors in the velocity and scalar fields. It should be noted that the link between
these metrics and true simulation quality is still in the research phase. In other words, a good quality score
is not sufficient to assure a good simulation (at the present time).

Measure of Turbulence Resolution

A scalar quantity referred to as the measure of turbulence resolution [48] is defined locally as

M(x) =
〈
ksgs
〉

〈TKE〉+
〈
ksgs
〉 (17.47)

where the resolved turbulent kinetic energy per unit mass is

TKE = 1
2(ũi−〈ũi〉)(ũi−〈ũi〉) (17.48)

TKE must be output via DEVC for each velocity component and its mean:

&DEVC ..., QUANTITY='U-VELOCITY' /
&DEVC ..., QUANTITY='U-VELOCITY', STATISTICS='MEAN' /
&DEVC ..., QUANTITY='V-VELOCITY' /
&DEVC ..., QUANTITY='V-VELOCITY', STATISTICS='MEAN' /
&DEVC ..., QUANTITY='W-VELOCITY' /
&DEVC ..., QUANTITY='V-VELOCITY', STATISTICS='MEAN' /

You must post-process these outputs to obtain TKE.
The subgrid kinetic energy is estimated from Deardorff’s eddy viscosity model

ksgs ≈ 1
2(ũi− ˆ̃ui)(ũi− ˆ̃ui) = (µt/(ρCν∆))2 (17.49)

Here, ũi is the resolved LES velocity and ˆ̃ui is test filtered at a scale 2∆ where ∆ is the LES filter width (in
FDS, ∆ = δx). In the bulk flow region, the model for the SGS fluctuations is taken from scale similarity
[49]. Cross-term energy is ignored. Keep in the mind, however, that the test filter operation is ill-defined
near walls, and so FDS employs constant Smagorinsky in these cells to compute the eddy viscosity.

To output an estimate of the subgrid kinetic energy per unit mass use

&DEVC ..., QUANTITY='SUBGRID KINETIC ENERGY' /
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The concept behind the measure of turbulence resolution is illustrated in Figure 17.5. Notice that on the
left the difference between the grid signal and the test signal is very small. On the right, the grid signal is
highly turbulent and the corresponding test signal is much smoother. We infer then that the flow is under-
resolved.
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Figure 17.5: (Left) Resolved signal, M is small. (Right) Unresolved signal, M is close to unity.

For the canonical case of isotropic turbulence Pope actually defines LES such that M < 0.2. That is, LES
requires resolution of 80% of the kinetic energy in the flow field (because this puts the grid Nyquist limit
within the inertial subrange). The question remains as to whether this critical value is sufficient or necessary
for a given engineering problem. As shown in Ref. [50], maintaining mean values of M near 0.2 indeed
provides satisfactory results (simulation results within experimental error bounds) for mean velocities and
species concentrations in nonreacting, buoyant plumes.

Wavelet Error Measure

A resolution metric that we call the wavelet error measure or WEM may be output using, for example,

&SLCF PBY=0, QUANTITY='WAVELET ERROR', QUANTITY2='HRRPUV' /

We begin by providing background on the simple Haar wavelet [51]. For a thorough and more sophisti-
cated review of wavelet methods, the reader is referred to Schneider and Vasilyev [52].

Suppose the scalar function f (r) is sampled at discrete points r j, separated by a distance h, giving values
s j. Defining the unit step function over the interval [r1,r2] by

ϕ[r1,r2] =

{
1 if r1 ≤ r < r2
0 otherwise

(17.50)

the simplest possible reconstruction of the signal is the step function approximation

f (r)≈∑
j

s jϕ[r j,r j+h](r) (17.51)

By “viewing” the signal at a coarser resolution, say 2h, an identical reconstruction of the function f over the
interval [r j,r j +2h] may be obtained from

f[r j,r j+2h](r) =
s j + s j+1

2︸ ︷︷ ︸
a

ϕ[r j,r j+2h](r)+
s j− s j+1

2︸ ︷︷ ︸
c

ψ[r j,r j+2h](r) (17.52)
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where a is as the average coefficient and c is as the wavelet coefficient. The Haar mother wavelet (Figure
17.6) is identified as

ψ[r1,r2](r) =
{

1 if r1 ≤ r < 1
2(r1 + r2)

−1 if 1
2(r1 + r2)≤ r < r2

(17.53)

−1 0 1 2

−1

0

1

ψ
[0

,1
]

Figure 17.6: Haar mother wavelet on the interval [0,1].

The decomposition of the signal shown in Eq. (17.52) may be repeated at ever coarser resolutions. The
result is a wavelet transform. The procedure is entirely analogous to the Fourier transform, but with compact
support. If we look at a 1D signal with 2m points, the repeated application of (17.52) results in an m×m
matrix of averages a with components ai j and an m×m wavelet coefficient matrix c with components ci j.
Each row i of a may be reconstructed from the i+1 row of a and c. Because of this and because small values
of the wavelet coefficient matrix may be discarded, dramatic compression of the signal may be obtained.

Here we are interested in using the wavelet analysis to say something about the local level of error due
to grid resolution. Very simply, we ask what can be discerned from a sample of four data points along a line.
Roughly speaking we might expect to see one of the four scenarios depicted in Figure 17.7. Within each
plot window we also show the results of a Haar wavelet transform for that signal. Looking first at the two
top plots, on the left we have a step function and on the right we have a straight line. Intuitively, we expect
large error for the step function and small error for the line. The following error measure achieves this goal:

WEM(x, t) = max
x,y,z

(
|c11 + c12|− |c21|

|a21|

)
(17.54)

Note that we have arbitrarily scaled the measure so that a step function leads to WEM of unity. In practice
the transform is performed in all coordinate directions and the max value is reported. The scalar value may
be output to Smokeview at the desired time interval.

Looking now at the two plots on the bottom of Figure 17.7, the signal on the left, which may indicate
spurious oscillations or unresolved turbulent motion, leads to WEM = 2. Our measure therefore views this
situation as the worst case in a sense. The signal to the lower right is indicative of an extremum, which
actually is easily resolved by most centered spatial schemes and results again in WEM = 0.

In [50], the time average of WEM was reported for LES of a nonreacting buoyant plume at three grid
resolutions. From this study, the best advice currently is to maintain average values of WEM less than 0.5.
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Figure 17.7: Averages and coefficients for local Haar wavelet transforms on four typical signals.

Local Cell Reynolds Number

Additionally, we provide an estimate of the local cell Reynolds number given by the ratio of the cell size
(LES filter width, ∆) to an estimate of the local Kolmogorov scale, η (see [10]). For a DNS, ∆/η should be
less than or equal to one. The Kolmogorov scale is computed from its definition:

η ≡
(
(µ/ρ)3

ε

)1/4

(17.55)

where µ is the molecular dynamic viscosity, ρ is the density, and ε is the kinetic energy dissipation rate,
which requires modeling. In FDS, we assume the dissipation rate is locally equivalent to the production of
subgrid-scale kinetic energy. This implies

ε = (µt/ρ)|S̃|2 (17.56)

where µt is the turbulent viscosity and |S̃| is the filtered strain invariant (see FDS Tech Guide).

&SLCF PBY=0, QUANTITY='CELL REYNOLDS NUMBER' /
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17.10.22 Extinction

In combustion, knowing if, when, or where chemical reactions have been extinguished is important. The
output quantity EXTINCTION tells the user whether or not combustion has been prevented by the extinction
routine. By default, EXTINCTION = 0, which means that the FDS extinction routine has not prevented
combustion. An EXTINCTION value of 1 means that the routine has prevented combustion. The criteria for
an EXTINCTION value of 1 is the presence of fuel and oxidizer without any energy release. An EXTINCTION
value of -1 means that there is either no fuel or no oxidizer present.

17.11 Extracting Numbers from the Output Data Files

Often it is desired to present results of calculations in some form other than those offered by Smokeview. In
this case, there is a short Fortran 90 program called fds2ascii.f90, with a PC compiled version called
fds2ascii.exe. To run the program, just type:

fds2ascii

at the command prompt. You will be asked a series of questions about which type of output file to pro-
cess, what time interval to time average the data, and so forth. A single file is produced with the name
CHID_fds2ascii.csv. A typical command line session looks like this:

>> fds2ascii
Enter Job ID string (CHID):

bucket_test_1
What type of file to parse?
PL3D file? Enter 1
SLCF file? Enter 2
BNDF file? Enter 3

3
Enter Sampling Factor for Data?
(1 for all data, 2 for every other point, etc.)

1
Limit the domain size? (y or n)

y
Enter min/max x, y and z

-5 5 -5 5 0 1
1 MESH 1, WALL TEMPERATURE
Enter starting and ending time for averaging (s)

35 36
Enter orientation: (plus or minus 1, 2 or 3)

3
Enter number of variables

1
Enter boundary file index for variable 1

1
Enter output file name:

bucket_test_1_fds2ascii.csv
Writing to file... bucket_test_1_fds2ascii.csv

These commands tell fds2ascii that you want to convert (binary) boundary file data into a text file.
You want to sample every data point within the specified volume, you want only those surfaces that point
upwards (+3 orientation), you only want 1 variable (only one is listed anyway and its index is 1 – that is just
the number used to list the available files). The data will be time-averaged, and it will be output to a file
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listed at the end of the session.
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17.12 Summary of Frequently-Used Output Quantities

Table 17.3, spread over the following pages, summarizes the various Output Quantities. The column “File
Type” lists the allowed output files for the quantities. “B” is for Boundary (BNDF), “D” is for Device (DEVC),
“I” is for Iso-surface (ISOF), “P” is for Plot3D, “PA” for PArticle (PART), “S” is for Slice (SLCF). Be careful
when specifying complicated quantities for Iso-surface or Plot3D files, as it requires computation in every
gas phase cell.

For those output quantities that require a species name via SPEC_ID, the species implicitly defined
when using the simple chemistry combustion model are ’OXYGEN’, ’NITROGEN’, ’WATER VAPOR’, and
’CARBON DIOXIDE’. If CO_YIELD and/or SOOT_YIELD are specified on the REAC line, then ’CARBON

MONOXIDE’ and ’SOOT’ are included as output species. The fuel species can be output via the FUEL

specified on the REAC line. As an example of how to use the species names, suppose you want to calculate
the integrated mass flux of carbon monoxide through a horizontal plane, like the total amount entrained in a
fire plume. Use a “device” as follows

&DEVC ID='CO_flow', XB=-5,5,-5,5,2,2, QUANTITY='MASS FLUX Z',
SPEC_ID='CARBON MONOXIDE', STATISTICS='AREA INTEGRAL' /

Here, the ID is just a label in the output file. When an output quantity is related to a particular gas species or
particle type, you must specify the appropriate SPEC_ID or PART_ID on the same input line. Also note that
the use of underscores in output quantity names has been eliminated – just remember that all output quantity
names ought to be in single quotes.
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Table 17.3: Summary of frequently used output quantities.

QUANTITY Symbol Units File Type
ABSORPTION COEFFICIENT Section 14.2 1/m D,I,P,S
ACTUATED SPRINKLERS Section 17.10.19 D
ADIABATIC SURFACE TEMPERATURE Section 17.10.6 ◦C B,D
AEROSOL VOLUME FRACTION∗ Section 17.10.16 mol/mol D,I,P,S
AMPUA∗∗ Section 17.9 kg/m2 B,D
AMPUA_Z∗ Section 17.9 kg/m2 B,D
ASPIRATION Section 16.3.7 %/m D
BACKGROUND PRESSURE Background pressure, p Pa D,I,P,S
BACK WALL TEMPERATURE Section 17.2.4 ◦C B,D
BURNING RATE Mass loss rate of fuel kg/(m2 · s) B,D
CHAMBER OBSCURATION Section 16.3.5 %/m D
CHI_R Section 14.1.1 D,I,S
CONDUCTIVITY Thermal conductivity W/(m ·K) D,I,P,S
CONTROL Section 16.5 D
CONTROL VALUE Section 16.5 D
CONVECTIVE HEAT FLUX Section 17.10.5 kW/m2 B,D
CPUA∗∗ Section 17.9 kW/m2 B,D
CPUA_Z∗ Section 17.9 kW/m2 B,D
CPU TIME Section 17.10.19 s D
DENSITY ρ or ρYα with SPEC_ID kg/m3 D,I,P,S
DEPOSITION VELOCITY Section 13.5 m/s B,D
DIVERGENCE ∇ ·u 1/s D,I,P,S
ENTHALPY Section 12.1.2 kJ/m3 D,I,P,S
EXTINCTION COEFFICIENT Section 17.10.2 1/m D,I,P,S
FED Section 17.10.9 D
FIC Section 17.10.9 D,S
FRICTION VELOCITY Section 17.10.14 m/s B,D
GAUGE HEAT FLUX Section 17.10.5 kW/m2 B,D
HEAT FLOW Section 17.10.10 kW D
HEAT FLOW WALL Section 17.10.10 kW D
NET HEAT FLUX Section 17.10.5 kW/m2 B,D
HRR

∫
q̇′′′ dV kW D

HRRPUA q̇′′ kW/m2 D
HRRPUV q̇′′′ kW/m3 D,I,P,S
INCIDENT HEAT FLUX Section 17.10.5 kW/m2 B,D
INSIDE WALL TEMPERATURE Section 17.2.3 ◦C D
ITERATION Section 17.10.19 D
LAYER HEIGHT Section 17.10.3 m D
LINK TEMPERATURE Section 16.3.4 ◦C D
LOWER TEMPERATURE Section 17.10.3 ◦C D
MASS FLOW Section 17.10.10 kg/s D
MASS FLOW WALL Section 17.10.10 kg/s D
MASS FLUX∗ Mass flux at solid surface kg/(m2 · s) B,D
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Table 17.3: Summary of frequently used output quantities (continued).

QUANTITY Symbol Units File Type
MASS FLUX X∗ ρuYα kg/(m2 · s) D,I,P,S
MASS FLUX Y∗ ρvYα kg/(m2 · s) D,I,P,S
MASS FLUX Z∗ ρwYα kg/(m2 · s) D,I,P,S
MASS FRACTION∗ Yα kg/kg D,I,P,S
MIXTURE FRACTION Z kg/kg D,I,P,S
MPUA∗∗ Section 17.9 kg/m2 B,D
MPUA_Z∗ Section 17.9 kg/m2 B,D
MPUV∗∗ Section 17.9 kg/m3 D,P,S
MPUV_Z∗ Section 17.9 kg/m3 D,P,S
NORMAL VELOCITY Wall normal velocity m/s D,B
NUMBER OF PARTICLES Section 17.10.19 D
OPEN NOZZLES Section 17.10.19 D
OPTICAL DENSITY Section 17.10.2 1/m D,I,P,S
PATH OBSCURATION Section 16.3.6 % D
PARTICLE AGE Section 17.9 s PA
PARTICLE DIAMETER Section 17.9 µm PA
PARTICLE FLUX X∗∗ Section 17.9 kg/(m2 · s) P,S
PARTICLE FLUX Y∗∗ Section 17.9 kg/(m2 · s) P,S
PARTICLE FLUX Z∗∗ Section 17.9 kg/(m2 · s) P,S
PARTICLE MASS Section 17.9 kg PA
PARTICLE TEMPERATURE Section 17.9 ◦C PA
PARTICLE VELOCITY Section 17.9 m/s PA
PRESSURE Perturbation pressure, p̃− p∞ Pa D,I,P,S
PRESSURE COEFFICIENT Section 17.10.13 B,D
PRESSURE ZONE Section 9.3 D,S
RADIATIVE HEAT FLUX Section 17.10.5 kW/m2 B,D
RADIATIVE HEAT FLUX GAS Section 17.10.5 kW/m2 D
RADIOMETER Section 17.10.5 kW/m2 B,D
RELATIVE HUMIDITY Section 13.1.1 % D,I,P,S
SENSIBLE ENTHALPY Section 17.10.18 kJ/m3 D,I,P,S
SOLID CONDUCTIVITY Section 17.2.3 W/(m ·K) D
SOLID DENSITY Section 17.2.3 kg/m3 D
SOLID SPECIFIC HEAT Section 17.2.3 kJ/(kg ·K) D
SPECIFIC ENTHALPY Section 17.10.18 kJ/kg D,I,P,S
SPECIFIC HEAT cp kJ/(kg ·K) D,I,P,S
SPECIFIC SENSIBLE ENTHALPY Section 17.10.18 kJ/kg D,I,P,S
SPRINKLER LINK TEMPERATURE Section 16.3.1 ◦C D
SURFACE DENSITY Section 17.10.8 kg/m2 B,D
SURFACE DEPOSITION∗ Section 13.5 kg/m2 B,D
TEMPERATURE Section 17.10.4 ◦C D,I,P,S
THERMOCOUPLE Section 17.10.4 ◦C D
TIME Section 16.1 s D
TIME STEP Section 17.10.19 s D
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Table 17.3: Summary of frequently used output quantities (continued).

QUANTITY Symbol Units File Type
TRANSMISSION Section 16.3.6 %/m D
U-VELOCITY Gas velocity component, u m/s D,I,P,S
V-VELOCITY Gas velocity component, v m/s D,I,P,S
W-VELOCITY Gas velocity component, w m/s D,I,P,S
UPPER TEMPERATURE Section 17.10.3 ◦C D
VELOCITY∗∗∗ Gas velocity m/s D,I,P,S
VISCOSITY µ kg/(m · s) D,I,P,S
VISIBILITY Section 17.10.2 m D,I,P,S
VOLUME FLOW Section 17.10.10 m3/s D
VOLUME FLOW WALL Section 17.10.10 m3/s D
VOLUME FRACTION∗∗∗∗ Xα mol/mol D,I,P,S
WALL CLOCK TIME Section 17.10.19 s D
WALL CLOCK TIME ITERATIONS Section 17.10.19 s D
WALL TEMPERATURE Surface temperature ◦C B,D
WALL THICKNESS Section 17.10.8 m B,D

∗ Quantity requires the specification of a gas species using SPEC_ID.
∗∗ Quantity requires the specification of a particle name using PART_ID.
∗∗∗ Add VELO_INDEX=1 to the input line if you want to multiply the velocity by the sign of u.

Use the indices 2 and 3 for v and w, respectively.
∗∗∗∗ Quantity requires the specification of a gas species using SPEC_ID.

Do not use for MIXTURE FRACTION.
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17.13 Summary of Infrequently-Used Output Quantities

Table 17.4 below lists some less often used output quantities. These are mainly used for diagnostic purposes.
Explanations for most can be found in Volume 1 of the FDS Technical Reference Guide [1].

Table 17.4: Summary of infrequently used output quantities.

QUANTITY Symbol Units File Type
ADA∗∗ Average Droplet (cross sectional) Area m2/m3 D,I,P,S
ADA_Z∗ Average Droplet (cross sectional) Area m2/m3 D,I,P,S
ADD∗∗ Average Droplet Diameter µm D,I,P,S
ADD_Z∗ Average Droplet Diameter µm D,I,P,S
ADT∗∗ Average Droplet Temperature ◦C D,I,P,S
ADT_Z∗ Average Droplet Temperature ◦C D,I,P,S
C_SMAG Smagorinsky coefficient D,I,P,S
CABLE TEMPERATURE Inner temperature of cable ◦C D
CELL INDEX I Mesh cell index in x D,S
CELL INDEX J Mesh cell index in y D,S
CELL INDEX K Mesh cell index in z D,S
CELL REYNOLDS NUMBER Section 17.10.21 D,I,P,S
CELL U (ui, j,k +ui−1, j,k)/2 m/s D,I,S
CELL V (vi, j,k + vi, j−1,k)/2 m/s D,I,S
CELL W (wi, j,k +wi, j,k−1)/2 m/s D,I,S
CFL Section 17.10.19 D,I,P,S
CFL MAX Section 17.10.19 D
CHEMICAL SUBITERATIONS Section 13.4 D,S
DIFFUSIVITY∗ Species diffusivity m2/s D,I,S
EMISSIVITY Surface emissivity (usually constant) B,D
EXTINCTION Section 17.10.22 D,S
F_X, F_Y, F_Z Momentum terms, Fx, Fy, Fz m/s2 D,I,P,S
GAS DENSITY Gas Density near wall kg/m3 B,D
GAS TEMPERATURE Gas Temperature near wall ◦C B,D
H H = |u|2/2+ p̃/ρ (m/s)2 D,I,P,S
HEAT TRANSFER COEFFICIENT Convective heat transfer W/(m2 ·K) B,D
HRRPUL

∫
q̇′′′ dx dy kW/m D

INTEGRATED INTENSITY U =
∫

I ds kW/m2 D,I,P,S
KINETIC ENERGY (u2 + v2 +w2)/2 (m/s)2 D,I,P,S
KOLMOGOROV LENGTH SCALE Section 17.10.21 m D,I,P,S
MACH NUMBER |u|/

√
(R/W )T γ S,D

MASS FLUX WALL CELL ρun at a wall cell face kg/(m2 · s) B,D
MAXIMUM VELOCITY ERROR Section 6.6 m/s D
MIXING TIME Combustion mixing time s D,I,P,S
NORMALIZED HEATING RATE Section 17.10.8 W/g D
NORMALIZED HEAT RELEASE RATE Section 17.10.8 W/g D
NORMALIZED MASS Section 17.10.8 D
NORMALIZED MASS LOSS RATE∗ Section 17.10.8 1/s D
PARTICLE PHASE Orientation of droplet PA
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Table 17.4: Summary of infrequently used output quantities (continued).

QUANTITY Symbol Units File Type
PARTICLE RADIATION LOSS ∇ ·q′′r due to Lagrangian particles kW/m3 D,I,P,S
PDPA Droplet diagnostics D
PRESSURE ITERATIONS No. pressure iterations D
QABS∗∗ Absorption efficiency of droplets D,I,P,S
QABS_Z∗ Absorption efficiency of droplets D,I,P,S
QSCA∗∗ Scattering efficiency of droplets D,I,P,S
QSCA_Z∗ Scattering efficiency of droplets D,I,P,S
RADIATION LOSS ∇ ·q′′r kW/m3 D,I,P,S
STRAIN RATE 2(Si jSi j−1/3(∇ ·u)2) 1/s D,I,P,S
STRAIN RATE X ∂w/∂y+∂v/∂ z 1/s D,I,P,S
STRAIN RATE Y ∂u/∂ z+∂w/∂x 1/s D,I,P,S
STRAIN RATE Z ∂v/∂x+∂u/∂y 1/s D,I,P,S
SUBGRID KINETIC ENERGY Section 17.10.21 m2/s2 D,S
SUM LUMPED MASS FRACTIONS ∑i Zi (should be 1) D,S
SUM PRIMITIVE MASS FRACTIONS ∑α Yα (should be 1) D,S
VELOCITY ERROR Section 6.6 B
VN Section 17.10.19 D,I,P,S
VN MAX Section 17.10.19 D
VORTICITY X ∂w/∂y−∂v/∂ z 1/s D,I,P,S
VORTICITY Y ∂u/∂ z−∂w/∂x 1/s D,I,P,S
VORTICITY Z ∂v/∂x−∂u/∂y 1/s D,I,P,S
WALL VISCOSITY Near-wall viscosity, µw kg/(m · s) B,D
WAVELET ERROR∗∗∗ Section 17.10.21 S
YPLUS Section 17.10.14 B,D

∗ Quantity requires the specification of a gas species using SPEC_ID.
∗∗ Quantity requires the specification of a particle name using PART_ID.
∗∗∗ Quantity requires specification of an additional scalar using QUANTITY2.
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17.14 Summary of HVAC Output Quantities

Table 17.5 summarizes the various Output Quantities for HVAC systems. Quantities for a duct require the
specification of a DUCT_ID, and quantities for a node require the specification of a NODE_ID. Mass and
volume fraction outputs also require the specification of a SPEC_ID.

Table 17.5: Summary of HVAC output quantities.

QUANTITY Symbol Units
AIRCOIL HEAT EXCHANGE Heat exchange rate for an aircoil kW
DUCT DENSITY Density of the flow in a duct kg/m3

DUCT MASS FLOW Mass flow in a duct kg/s
DUCT MASS FRACTION Mass fraction of a species in a duct kg/kg
DUCT TEMPERATURE Temperature of the flow in a duct ◦C
DUCT VELOCITY Velocity of a duct m/s
DUCT VOLUME FLOW Volumetric flow in a duct m3/s
DUCT VOLUME FRACTION Volume fraction of a species in a duct mol/mol
FAN PRESSURE Pressure output of a fan in a duct Pa
FILTER LOADING Loading of a species in a filter kg
FILTER LOSS Flow loss through a filter
NODE DENSITY Density of the flow through a node kg/m3

NODE MASS FRACTION Mass fraction of a species in a node kg/kg
NODE PRESSURE Pressure of a node Pa
NODE PRESSURE DIFFERENCE Pressure difference between two nodes Pa
NODE TEMPERATURE Temperature of the flow though a node ◦C
NODE VOLUME FRACTION Volume fraction of a species in a node mol/mol
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Chapter 18

Alphabetical List of Input Parameters

This appendix lists all of the input parameters for FDS in separate tables grouped by namelist, these tables
are in alphabetical order along with the parameters within them. This is intended to be used as a quick
reference and does not replace reading the detailed description of the parameters in the main body of this
guide. See Table 5.1 for a cross-reference of relevant sections and the tables in this appendix. The reason
for this statement is that many of the listed parameters are mutually exclusive – specifying more than one
can cause the program to either fail or run in an unpredictable manner. Also, some of the parameters trigger
the code to work in a certain mode when specified. For example, specifying the thermal conductivity of a
solid surface triggers the code to assume the material to be thermally-thick, mandating that other properties
be specified as well. Simply prescribing as many properties as possible from a handbook is bad practice.
Only prescribe those parameters which are necessary to describe the desired scenario. Note that you may
use the character string FYI on any namelist line to make a note or comment.
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18.1 BNDF (Boundary File Parameters)

Table 18.1: For more information see Section 17.5.

BNDF (Boundary File Parameters)
CELL_CENTERED Logical Section 17.5 .FALSE.

PART_ID Character Section 17.12
PROP_ID Character Section 17.5
QUANTITY Character Section 17.12
SPEC_ID Character Section 17.12
STATISTICS Character Section 17.5

18.2 CLIP (Clipping Parameters)

Table 18.2: For more information see Section 6.7.

CLIP (Specified Upper and Lower Limits)
MAXIMUM_DENSITY Real Section 6.7 kg/m3

MAXIMUM_TEMPERATURE Real Section 6.7 ◦C
MINIMUM_DENSITY Real Section 6.7 kg/m3

MINIMUM_TEMPERATURE Real Section 6.7 ◦C

18.3 CSVF (Comma Separated Velocity Files)

Table 18.3: For more information see Section 6.4.4.

CSVF (Comma Delimited Output Files)
UVWFILE Character Section 6.4.4

18.4 CTRL (Control Function Parameters)

Table 18.4: For more information see Section 16.5.

CTRL (Control Function Parameters)
CONSTANT Real Section 16.5.6
DELAY Real Section 16.5.9 s 0.
DIFFERENTIAL_GAIN Real Section 16.5.7 0.
EVACUATION Logical Reference [53] .FALSE.

FUNCTION_TYPE Character Section 16.4
ID Character Section 16.5
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Table 18.4: Continued

CTRL (Control Function Parameters)
INITIAL_STATE Logical Section 16.4 .FALSE.

INPUT_ID Char. Array Section 16.5
INTEGRAL_GAIN Real Section 16.5.7 0.
LATCH Logical Section 16.4 .TRUE.

N Integer Section 16.5 1
ON_BOUND Character Section 16.5.3 LOWER

PROPORTIONAL_GAIN Real Section 16.5.7 0.
RAMP_ID Character Section 16.5.5
SETPOINT(2) Real Section 16.4
TARGET_VALUE Real Section 16.5.7 0.
TRIP_DIRECTION Integer Section 16.4 1

18.5 DEVC (Device Parameters)

Table 18.5: For more information see Section 16.1.

DEVC (Device Parameters)
BYPASS_FLOWRATE Real Section 16.3.7 kg/s 0
CONVERSION_FACTOR Real Section 16.2 1
COORD_FACTOR Real Section 16.2 1
CTRL_ID Character Section 16.6.1
DELAY Real Section 16.3.7 s 0
DEPTH Real Section 17.10.8 m 0
DEVC_ID Character Sections 16.3.7 and 16.6.1
DRY Logical Section 17.10.15 .FALSE.

DUCT_ID Character Section 9.2
EVACUATION Logical Reference [53] .FALSE.

FLOWRATE Real Section 16.3.7 kg/s 0
HIDE_COORDINATES Logical Section 17.2.2 .FALSE.

ID Character Section 16.1
INITIAL_STATE Logical Section 16.4 .FALSE.

INIT_ID Character Section 15.4
IOR Integer Section 16.1
LATCH Logical Section 16.4 .TRUE.

MATL_ID Character Section 17.10.8
NODE_ID Character(2) Section 9.2
NO_UPDATE_DEVC_ID Character Section 16.6.2
NO_UPDATE_CTRL_ID Character Section 16.6.2
ORIENTATION Real Triplet Section 16.1 0,0,-1
ORIENTATION_NUMBER Integer Section 17.9 1
OUTPUT Logical Section 16.2 .TRUE.

PART_ID Character Section 17.12
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Table 18.5: Continued

DEVC (Device Parameters)
PIPE_INDEX Integer Section 16.3.1 1
POINTS Integer Section 17.2.2 1
PROP_ID Character Section 16.1
QUANTITY Character Section 16.1
QUANTITY2 Character Section 17.2.2
QUANTITY_RANGE Real(2) Section 17.10.10 -1.E50,1.E50
RELATIVE Logical Section 16.2 .FALSE.

R_ID Character Section 17.2.2
ROTATION Real Section 16.1 deg. 0
SETPOINT Real Section 16.4
STATISTICS Character Section 17.10.10
STATISTICS_START Real Section 17.10.12 s T_BEGIN

SMOOTHING_FACTOR Real Section 16.4 0
SPEC_ID Character Section 17.12
SURF_ID Character Section 17.10.10
TIME_AVERAGED Logical Section 16.2 .TRUE.

TIME_HISTORY Logical Section 17.2.2
TRIP_DIRECTION Integer Section 16.4 1
UNITS Character Section 16.2
VELO_INDEX Integer Section 17.10.17 0
XB(6) Real Sextuplet Section 17.10.10 m
XYZ(3) Real Triplet Section 16.1 m
X_ID Character Section 17.2.2 ID-x

Y_ID Character Section 17.2.2 ID-y

Z_ID Character Section 17.2.2 ID-z

18.6 DUMP (Output Parameters)

Table 18.6: For more information see Section 17.1.

DUMP (Output Parameters)
CLIP_RESTART_FILES Logical Section 6.4.3 .TRUE.

COLUMN_DUMP_LIMIT Logical Section 16.2 .FALSE.

CTRL_COLUMN_LIMIT Integer Section 16.2 254
DEVC_COLUMN_LIMIT Integer Section 16.2 254
DT_BNDF Real Section 17.1 s 2∆t/NFRAMES
DT_CPU Real Section 21.5 s 1000000
DT_CTRL Real Section 17.1 s ∆t/NFRAMES
DT_DEVC Real Section 17.1 s ∆t/NFRAMES
DT_DEVC_LINE Real Section 17.2.2 s ∆t/2
DT_FLUSH Real Section 17.1 s ∆t/NFRAMES
DT_HRR Real Section 17.1 s ∆t/NFRAMES
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Table 18.6: Continued

DUMP (Output Parameters)
DT_ISOF Real Section 17.1 s ∆t/NFRAMES
DT_MASS Real Section 17.1 s ∆t/NFRAMES
DT_PART Real Section 17.1 s ∆t/NFRAMES
DT_PL3D Real Section 17.1 s 1.E10
DT_PROF Real Section 17.1 s ∆t/NFRAMES
DT_RESTART Real Section 17.1 s 1000000.
DT_SL3D Real Section 17.1 s ∆t/5
DT_SLCF Real Section 17.1 s ∆t/NFRAMES
EB_PART_FILE Logical Section 17.1 .FALSE.

FLUSH_FILE_BUFFERS Logical Section 17.1 .TRUE.

MASS_FILE Logical Section 17.1 .FALSE.

MAXIMUM_PARTICLES Integer Section 17.1 1000000
NFRAMES Integer Section 17.1 1000
PLOT3D_PART_ID(5) Char. Quint Section 17.7
PLOT3D_QUANTITY(5) Char. Quint Section 17.7
PLOT3D_SPEC_ID(5) Char. Quint Section 17.7
PLOT3D_VELO_INDEX Int. Quint Section 17.10.17 0
RENDER_FILE Character Reference [2]
SIG_FIGS Integer Section 17.10.20 8
SIG_FIGS_EXP Integer Section 17.10.20 3
SMOKE3D Logical Section 17.8 .TRUE.

SMOKE3D_QUANTITY Character Section 17.8
SMOKE3D_SPEC_ID Character Section 17.8
STATUS_FILES Logical Section 17.1 .FALSE.

SUPPRESS_DIAGNOSTICS Logical Section 3.3 .FALSE.

UVW_TIMER Real Vector (10) Section 6.4.4 s
VELOCITY_ERROR_FILE Logical Section 17.10.19 .FALSE.

WRITE_XYZ Logical Section 17.7 .FALSE.

∆t=T_END-T_BEGIN

18.7 HEAD (Header Parameters)

Table 18.7: For more information see Section 6.1.

HEAD (Header Parameters)
CHID Character Section 6.1 ’output’

TITLE Character Section 17.7
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18.8 HOLE (Obstruction Cutout Parameters)

Table 18.8: For more information see Section 7.2.6.

HOLE (Obstruction Cutout Parameters)
COLOR Character Section 7.4
CTRL_ID Character Section 7.2.6
DEVC_ID Character Section 7.2.6
EVACUATION Logical Reference [53]
ID Character Identifier for input line
MESH_ID Character Reference [53]
MULT_ID Character Section 7.5
RGB(3) Integer Triplet Section 7.4
TRANSPARENCY Real Section 7.2.6
XB(6) Real Sextuplet Section 7.5 m

18.9 HVAC (HVAC System Definition)

Table 18.9: For more information see Section 9.2.

HVAC (HVAC System Definition)
AIRCOIL_ID Character Section 9.2.1
AMBIENT Logical Section 9.2.3 .FALSE.

AREA Real Section 9.2.1 m2

CLEAN_LOSS Real Section 9.2.5
COOLANT_MASS_FLOW Real Section 9.2.6 kg/s
COOLANT_SPECIFIC_HEAT Real Section 9.2.6 kJ/(kg ·K)
COOLANT_TEMPERATURE Real Section 9.2.6 ◦C
CTRL_ID Character Sections 9.2.1, 9.2.4, 9.2.5
DAMPER Logical Sections 9.2.1, 9.2.2 .FALSE.

DEVC_ID Character Sections 9.2.1, 9.2.4, 9.2.5
DIAMETER Real Section 9.2.1 m
DUCT_ID Character Array Section 9.2.3
DUCT_INTERP_TYPE Character Section 9.2.8 ’NODE1’

EFFICIENCY Real Array Sections 9.2.5, 9.2.6 1.0
FAN_ID Character Section 9.2.1
FILTER_ID Character Section 9.2.3
FIXED_Q Real Section 9.2.6 kW
ID Character Section 9.2
LEAK_ENTHALPY Logical Section 9.3.2 .FALSE.

LENGTH Real Section 9.2.1 m
LOADING Real Array Section 9.2.5 kg 0.0
LOADING_MULTIPLIER Real Array Section 9.2.5 1/kg 1.0
LOSS Real Array Sections 9.2.1 – 9.2.5 0.0
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Table 18.9: Continued

HVAC (HVAC System Definition)
MASS_FLOW Real Section 9.2.1 kg/s
MAX_FLOW Real Section 9.2.4 m3/s
MAX_PRESSURE Real Section 9.2.4 Pa
N_CELLS Integer Section 9.2.8 LENGTH/0.1
NODE_ID Character Doublet Section 9.2.1
PERIMETER Real Section 9.2.1 m
RAMP_ID Character Sections 9.2.1, 9.2.5, 9.2.4
RAMP_LOSS Character Sections 9.2.1, 9.2.2
REVERSE Logical Section 9.2.1 .FALSE.

ROUGHNESS Real Section 9.2.1 m 0.0
SPEC_ID Character Array Section 9.2.5
TAU_AC Real Section 9.2.6 s 1.0
TAU_FAN Real Section 9.2.4 s 1.0
TAU_VF Real Section 9.2.1 s 1.0
TYPE_ID Character Section 9.2
VENT_ID Character Section 9.2.3
VENT2_ID Character Section 9.3.2
VOLUME_FLOW Real Section 9.2.1, 9.2.4 m3/s
XYZ Real Triplet Section 9.2.3 m 0.0

18.10 INIT (Initial Conditions)

Table 18.10: For more information see Section 6.5.

INIT (Initial Conditions)
CELL_CENTERED Logical Section 15.5.3 .FALSE.

CTRL_ID Character Section 15.5.3
DENSITY Real Section 6.5 kg/m3 Ambient
DEVC_ID Character Section 15.5.3
DIAMETER Real Section 15.5.3 µm
DT_INSERT Real Section 15.5.3 s
DX Real Section 15.5.3 m 0.
DY Real Section 15.5.3 m 0.
DZ Real Section 15.5.3 m 0.
HEIGHT Real Section 15.5.3 m
HRRPUV Real Section 6.5 kW/m3

ID Character Section 15.4
MASS_FRACTION(N) Real Array Section 6.5 kg/kg Ambient
MASS_PER_TIME Real Section 15.5.3 kg/s
MASS_PER_VOLUME Real Section 15.5.3 kg/m3 1
MULT_ID Character Section 7.5
N_PARTICLES Integer Section 15.5.3 0
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Table 18.10: Continued

INIT (Initial Conditions)
N_PARTICLES_PER_CELL Integer Section 15.5.3 0
PART_ID Character Section 15.5.3
PARTICLE_WEIGHT_FACTOR Real Section 15.5.3 1.
RADIUS Real Section 15.5.3 m
SHAPE Character Section 15.5.3 ’BLOCK’

SPEC_ID(N) Character Array Section 6.5
TEMPERATURE Real Section 6.5 °C TMPA

UVW(3) Real Triplet Section 15.5.3 m/s 0.
XB(6) Real Sextuplet Section 6.5 m
XYZ(3) Real Triplet Section 15.5.3 m

18.11 ISOF (Isosurface Parameters)

Table 18.11: For more information see Section 17.6.

ISOF (Isosurface Parameters)
QUANTITY Character Section 17.6
REDUCE_TRIANGLES Integer Reference [2] 1
SPEC_ID Character Section 17.6
VALUE(I) Real Array Section 17.6
VELO_INDEX Integer Section 17.10.17 0

18.12 MATL (Material Properties)

Table 18.12: For more information see Section 8.3.

MATL (Material Properties)
A(:) Real array Section 8.5 1/s
ABSORPTION_COEFFICIENT Real Section 8.3.2 1/m 50000.
ALLOW_SHRINKING Logical Section 8.5.3 .TRUE.

ALLOW_SWELLING Logical Section 8.5.3 .TRUE.

BOILING_TEMPERATURE Real Section 8.5.7 ◦C 5000.
CONDUCTIVITY Real Section 8.3.2 W/(m ·K) 0.
CONDUCTIVITY_RAMP Character Section 8.3.2
DENSITY Real Section 8.3.2 kg/m3 0.
E(:) Real array Section 8.5 kJ/kmol
EMISSIVITY Real Section 8.3.2 0.9
GAS_DIFFUSION_DEPTH(:) Real array Section 8.5 m 0.001
HEATING_RATE(:) Real array Section 8.5 ◦C/min 5.
HEAT_OF_COMBUSTION(:) Real array Section 8.5 kJ/kg
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Table 18.12: Continued

MATL (Material Properties)
HEAT_OF_REACTION(:) Real array Section 8.5 kJ/kg 0.
ID Character Section 8.1
MATL_ID(:,:) Character Section 8.5
NU_MATL(:,:) Real array Section 8.5 kg/kg 0.
NU_SPEC(:,:) Real array Section 8.5 kg/kg 0.
N_REACTIONS Integer Section 8.5 0
N_O2(:) Real array Section 8.5 0.
N_S(:) Real array Section 8.5 1.
N_T(:) Real array Section 8.5 0.
PCR(:) Logical array Section 8.5 .FALSE.

PYROLYSIS_RANGE(:) Real array Section 8.5 ◦C 80.
REFERENCE_RATE(:) Real array Section 8.5 1/s
REFERENCE_TEMPERATURE(:) Real array Section 8.5 ◦C
SPECIFIC_HEAT Real Section 8.3.2 kJ/(kg ·K) 0.
SPECIFIC_HEAT_RAMP Character Section 8.3.2
SPEC_ID(:,:) Character Section 8.5
THRESHOLD_SIGN(:) Real array Section 8.5 1.0
THRESHOLD_TEMPERATURE(:) Real array Section 8.5 ◦C -273.15

18.13 MESH (Mesh Parameters)

Table 18.13: For more information see Section 6.3.

MESH (Mesh Parameters)
COLOR Character Section 6.3.3 ’BLACK’

CYLINDRICAL Logical Section 6.3.2 .FALSE.

EVACUATION Logical Reference [53] .FALSE.

EVAC_HUMANS Logical Reference [53] .FALSE.

EVAC_Z_OFFSET Real Reference [53] m 1
ID Character Reference [53]
IJK Integer Triplet Section 6.3.1 10,10,10
LEVEL Integer For future use 0
MPI_PROCESS Integer Section 6.3.3
N_THREADS Integer Section 6.3.3
MULT_ID Character Section 7.5
PERIODIC_MESH_IDS Character Array Section 7.3.2
RGB Integer Triplet Section 6.3.3 0,0,0
XB(6) Real Sextuplet Section 6.3.1 m 0,1,0,1,0,1
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18.14 MISC (Miscellaneous Parameters)

Table 18.14: For more information see Section 6.4.

MISC (Miscellaneous Parameters)
ALLOW_SURFACE_PARTICLES Logical Section 15.6.1 .TRUE.

ALLOW_UNDERSIDE_PARTICLES Logical Section 15.6.1 .FALSE.

ASSUMED_GAS_TEMPERATURE Real Section 8.6 ◦C
ASSUMED_GAS_TEMPERATURE_RAMP Character Section 8.6
BAROCLINIC Logical Section 6.4.7 .TRUE.

BNDF_DEFAULT Logical Section 17.5 .TRUE.

C_DEARDORFF Real Section 6.4.8 0.1
C_SMAGORINSKY Real Section 6.4.8 0.20
C_VREMAN Real Section 6.4.8 0.07
CFL_MAX Real Section 6.4.9 1.0
CFL_MIN Real Section 6.4.9 0.8
CFL_VELOCITY_NORM Integer Section 6.4.9 0 (LES), 1 (DNS)
CHECK_HT Logical Section 6.4.9 .FALSE.

CHECK_VN Logical Section 6.4.9 .FALSE.

CLIP_MASS_FRACTION Logical Section 6.7 .FALSE.

CNF_CUTOFF Real Section 15.3.3 0.005
CONSTANT_SPECIFIC_HEAT_RATIO Logical Section 12.1.2 .FALSE.

DNS Logical Section 6.4.1 .FALSE.

DRIFT_FLUX Logical Section 13.5 .TRUE.

DT_HVAC Real Section 9.2 s
DT_MEAN_FORCING Real Section 10.2 s 1.E10
EVACUATION_DRILL Logical Reference [53] .FALSE.

EVACUATION_MC_MODE Logical Reference [53] .FALSE.

EVAC_PRESSURE_ITERATIONS Integer Reference [53] 50
EVAC_TIME_ITERATIONS Integer Reference [53] 50
FLUX_LIMITER Integer Section 6.4.10 2
FORCE_VECTOR(3) Real Section 6.4.2 0.
FREEZE_VELOCITY Logical Section 6.4.5 .FALSE.

GAMMA Real Section 12.1.2 1.4
GRAVITATIONAL_DEPOSITION Logical Section 13.5 .TRUE.

GRAVITATIONAL_SETTLING Logical Section 13.5 .TRUE.

GROUND_LEVEL Real Section 10.1 m 0.
GVEC Real triplet Section 6.4.6 m/s2 0,0,-9.81
H_F_REFERENCE_TEMPERATURE Real Section 17.10.18 °C 25.
HVAC_MASS_TRANSPORT Logical Section 9.2.8 .FALSE.

HUMIDITY Real Section 12.1.1 % 40.
IBLANK_SMV Logical Section 17.4 .TRUE.

INITIAL_UNMIXED_FRACTION Real Section 13.1.3 1.0
LAPSE_RATE Real Section 10.1 °C/m 0
MAX_CHEMISTRY_ITERATIONS Integer Section 13.4 1000
MAX_LEAK_PATHS Integer Section 9.3.2 200
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Table 18.14: Continued

MISC (Miscellaneous Parameters)
MAXIMUM_VISIBILITY Real Section 17.10.2 m 30
MEAN_FORCING(3) Logical Section 10.2 .FALSE.

MPI_TIMEOUT Real Section 17.10.19 s 10.
NOISE Logical Section 6.4.1 .TRUE.

NOISE_VELOCITY Real Section 6.4.1 m/s 0.005
NO_EVACUATION Logical Reference [53] .FALSE.

OVERWRITE Logical Section 6.4.1 .TRUE.

PARTICLE_CFL Logical Section 6.4.9 .FALSE.

PARTICLE_CFL_MAX Real Section 6.4.9 1.0
POROUS_FLOOR Logical Section 16.3.1 .TRUE.

PR Real Section 6.4.8 0.5
PROCESS_ALL_MESHES Logical Section 7.3.2 .FALSE.

PROJECTION Logical Formal projection .FALSE.

P_INF Real Section 6.4.1 Pa 101325
RAMP_FVX_T Character Section 6.4.2
RAMP_FVY_T Character Section 6.4.2
RAMP_FVZ_T Character Section 6.4.2
RAMP_GX Character Section 6.4.6
RAMP_GY Character Section 6.4.6
RAMP_GZ Character Section 6.4.6
RAMP_TMP0_Z Character Section 10.1
RAMP_U0_T Character Section 10.2
RAMP_V0_T Character Section 10.2
RAMP_W0_T Character Section 10.2
RAMP_U0_Z Character Section 10.2
RAMP_V0_Z Character Section 10.2
RAMP_W0_Z Character Section 10.2
RESTART Logical Section 6.4.3 .FALSE.

RESTART_CHID Character Section 6.4.3 CHID

RICHARDSON_ERROR_TOLERANCE Real Section 13 1.0 E-3
RUN_AVG_FAC Real Section 15.3.2 0.5
SC Real Section 6.4.8 0.5
SHARED_FILE_SYSTEM Logical Section 6.3.3 .TRUE.

SMOKE_ALBEDO Real Reference [2] 0.3
SOLID_PHASE_ONLY Logical Section 8.6 .FALSE.

STRATIFICATION Logical Section 10.1 .TRUE.

SUPPRESSION Logical Section 13.1.4 .TRUE.

TEXTURE_ORIGIN(3) Real Triplet Section 7.4.2 m (0.,0.,0.)
THERMOPHORETIC_DEPOSITION Logical Section 13.5 .TRUE.

THICKEN_OBSTRUCTIONS Logical Section 7.2.1 .FALSE.

TMPA Real Section 6.4.1 °C 20.
TURBULENCE_MODEL Character Section 6.4.8 ’DEARDORFF’

TURBULENT_DEPOSITION Logical Section 13.5 .TRUE.
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Table 18.14: Continued

MISC (Miscellaneous Parameters)
U0,V0,W0 Reals Section 6.4.1 m/s 0.
VERBOSE Logical Section 6.3.3
VISIBILITY_FACTOR Real Section 17.10.2 3
VN_MAX Real Section 6.4.9 0.5
VN_MIN Real Section 6.4.9 0.4
Y_CO2_INFTY Real Section 13.1.1 kg/kg 0.000595
Y_O2_INFTY Real Section 13.1.1 kg/kg 0.232378

18.15 MULT (Multiplier Function Parameters)

Table 18.15: For more information see Section 7.5.

MULT (Multiplier Function Parameters)
DX Real Spacing in the x direction m 0.
DXB Real Sextuplet Spacing for all 6 coordinates m 0.
DX0 Real Translation in the x direction m 0.
DY Real Spacing in the y direction m 0.
DY0 Real Translation in the y direction m 0.
DZ Real Spacing in the z direction m 0.
DZ0 Real Translation in the z direction m 0.
ID Character Identification tag
I_LOWER Integer Lower array bound, x direction 0
I_UPPER Integer Upper array bound, x direction 0
J_LOWER Integer Lower array bound, y direction 0
J_UPPER Integer Upper array bound, y direction 0
K_LOWER Integer Lower array bound, z direction 0
K_UPPER Integer Upper array bound, z direction 0
N_LOWER Integer Lower sequence bound 0
N_UPPER Integer Upper sequence bound 0

18.16 OBST (Obstruction Parameters)

Table 18.16: For more information see Section 7.2.

OBST (Obstruction Parameters)
ALLOW_VENT Logical Section 7.2.1 .TRUE.

BNDF_FACE(-3:3) Logical Array Section 17.5 .TRUE.

BNDF_OBST Logical Section 17.5 .TRUE.

BULK_DENSITY Real Section 8.5.8 kg/m3

COLOR Character Section 7.2.1
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Table 18.16: Continued

OBST (Obstruction Parameters)
CTRL_ID Character Section 16.4.2
DEVC_ID Character Section 16.4.2
EVACUATION Logical Reference [53] .FALSE.

HT3D Logical Section 8.3.9 .FALSE.

ID Character Section 7.2.1
MESH_ID Character Reference [53]
MULT_ID Character Section 7.5
OUTLINE Logical Section 7.2.1 .FALSE.

OVERLAY Logical Section 7.2.1 .TRUE.

PERMIT_HOLE Logical Section 7.2.6 .TRUE.

PROP_ID Character Reference [2]
REMOVABLE Logical Section 7.2.6 .TRUE.

RGB(3) Integer Triplet Section 7.2.1
SURF_ID Character Section 7.2.1
SURF_ID6(6) Character Sextuplet Section 7.2.1
SURF_IDS(3) Character Triplet Section 7.2.1
TEXTURE_ORIGIN(3) Real Triplet Section 7.4.2 m (0.,0.,0.)
THICKEN Logical Section 7.2.1 .FALSE.

TRANSPARENCY Real Section 7.2.1 1
XB(6) Real Sextuplet Section 7.2.1 m

18.17 PART (Lagrangian Particles/Droplets)

Table 18.17: For more information see Chapter 15.

PART (Lagrangian Particles/Droplets)
AGE Real Section 17.9 s 1×105

BREAKUP Logical Section 15.3.4 .FALSE.

BREAKUP_CNF_RAMP_ID Character Section 15.3.4
BREAKUP_DISTRIBUTION Character Section 15.3.4 ’ROSIN...’

BREAKUP_GAMMA_D Real Section 15.3.4 2.4
BREAKUP_RATIO Real Section 15.3.4 3/7
BREAKUP_SIGMA_D Real Section 15.3.4
CHECK_DISTRIBUTION Logical Section 15.3.3 .FALSE.

CNF_RAMP_ID Character Section 15.3.3
COLOR Character Section 17.9 ’BLACK’

COMPLEX_REFRACTIVE_INDEX Real Section 15.3.2 0.01
CTRL_ID Character Section 15.5.1
DENSE_VOLUME_FRACTION Real Section 15.4.2 1×10−5

DEVC_ID Character Section 15.5.1
DIAMETER Real Section 15.3.3 µm
DISTRIBUTION Character Section 15.3.3 ’ROSIN...’
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Table 18.17: Continued

PART (Lagrangian Particles/Droplets)
DRAG_COEFFICIENT(3) Real Array Section 15.4.2
DRAG_LAW Character Section 15.4.2 ’SPHERE’

FREE_AREA_FRACTION Real Section 15.4.8
GAMMA_D Real Section 15.3.3 2.4
HEAT_OF_COMBUSTION Real Section 15.3.5 kJ/kg
HORIZONTAL_VELOCITY Real Section 15.6.1 m/s 0.2
ID Character Section 15.1
INITIAL_TEMPERATURE Real Section 15.3.1 ◦C TMPA

MASSLESS Logical Section 15.2 .FALSE.

MAXIMUM_DIAMETER Real Section 15.3.3 µm Infinite
MINIMUM_DIAMETER Real Section 15.3.3 µm 20.
MONODISPERSE Logical Section 15.3.3 .FALSE.

N_STRATA Integer Section 15.3.3 7
ORIENTATION(1:3,:) Real Array Section 15.4
PERMEABILITY(3) Real Array Section 15.4.7
PROP_ID Character Section 15.1
QUANTITIES(10) Character Section 17.9
QUANTITIES_SPEC_ID(10) Character Section 17.9
RADIATIVE_PROPERTY_TABLE Real Section 15.3.2
REAL_REFRACTIVE_INDEX Real Section 15.3.2 1.33
RGB(3) Integers Section 17.9
SAMPLING_FACTOR Integer Section 17.9 1
SECOND_ORDER_PARTICLE_TRANSPORT Logical Section 6.4.9 .FALSE.

SIGMA_D Real Section 15.3.3
SPEC_ID Character Section 15.3.1
STATIC Logical Section 15.4 .FALSE.

SURFACE_TENSION Real Section 15.3.4 N/m 7.28×104

SURF_ID Character Section 15.4
TURBULENT_DISPERSION Logical Section 15.2 .FALSE.

VERTICAL_VELOCITY Real Section 15.6.1 m/s 0.5

18.18 PRES (Pressure Solver Parameters)

Table 18.18: For more information see Section 6.6.

PRES (Pressure Solver Parameters)
CHECK_POISSON Logical Section 6.6 .FALSE.

FISHPAK_BC(3) Integer Section 6.6
ITERATION_SUSPEND_FACTOR Real Section 6.6 s 0.95
MAX_PRESSURE_ITERATIONS Integer Section 6.6 10
PRESSURE_RELAX_TIME Real Section 6.6 s 1.
PRESSURE_TOLERANCE Real Section 6.6 m/s2 1.
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Table 18.18: Continued

PRES (Pressure Solver Parameters)
RELAXATION_FACTOR Real Section 6.6 1.
SUSPEND_PRESSURE_ITERATIONS Logical Section 6.6 .TRUE.

VELOCITY_TOLERANCE Real Section 6.6 m/s

18.19 PROF (Wall Profile Parameters)

Table 18.19: For more information see Section 17.3.

PROF (Wall Profile Parameters)
ID Character Section 17.3
FORMAT_INDEX Integer Section 17.3 1
IOR Real Section 17.3
QUANTITY Character Section 17.3
XYZ Real Triplet Section 17.3 m

18.20 PROP (Device Properties)

Table 18.20: For more information see Section 16.3.

PROP (Device Properties)
ACTIVATION_OBSCURATION Real Section 16.3.5 %/m 3.24
ACTIVATION_TEMPERATURE Real Section 16.3.1 ◦C 74.
ALPHA_C Real Section 16.3.5 1.8
ALPHA_E Real Section 16.3.5 0.
BETA_C Real Section 16.3.5 1.
BETA_E Real Section 16.3.5 1.
CHARACTERISTIC_VELOCITY Real Section 17.10.13 m/s 1.
C_FACTOR Real Section 16.3.1 (m/s)1/2 0.
DENSITY Real Section 17.10.4 kg/m3 8908.
DIAMETER Real Section 17.10.4 m 0.001
EMISSIVITY Real Section 17.10.4 0.85
FLOW_RAMP Character Section 16.3.1
FLOW_RATE Real Section 16.3.1 L/min
FLOW_TAU Real Section 16.3.1 0.
GAUGE_EMISSIVITY Real Section 17.10.5 0.9
GAUGE_TEMPERATURE Real Section 17.10.5 ◦C TMPA

HEAT_TRANSFER_COEFFICIENT Real Section 17.10.4 W/(m2 ·K)
ID Character Section 16.3
INITIAL_TEMPERATURE Real Section 16.3.1 ◦C TMPA

K_FACTOR Real Section 16.3.1 L/(min ·bar
1
2 ) 1.
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Table 18.20: Continued

PROP (Device Properties)
LENGTH Real Section 16.3.5 m 1.8
MASS_FLOW_RATE Real Section 16.3.1 kg/s
OFFSET Real Section 16.3.1 m 0.05
OPERATING_PRESSURE Real Section 16.3.1 bar 1.
ORIFICE_DIAMETER Real Section 16.3.1 m 0.
P0,PX(3),PXX(3,3) Real Section 16.3.3 m/s 0.
PARTICLES_PER_SECOND Integer Section 16.3.1 5000
PARTICLE_VELOCITY Real Section 16.3.1 m/s 0.
PART_ID Character Section 16.3.1
PDPA_END Real Section 17.10.7 s T_END

PDPA_HISTOGRAM Logical Section 17.10.7 .FALSE.
PDPA_HISTOGRAM_CUMULATIVE Logical Section 17.10.7 .FALSE.
PDPA_HISTOGRAM_LIMITS Real Array Section 17.10.7
PDPA_HISTOGRAM_NBINS Integer Section 17.10.7 10
PDPA_INTEGRATE Logical Section 17.10.7 .TRUE.

PDPA_M Integer Section 17.10.7 0
PDPA_N Integer Section 17.10.7 0
PDPA_NORMALIZE Logical Section 17.10.7 .TRUE.

PDPA_RADIUS Real Section 17.10.7 m 0.
PDPA_START Real Section 17.10.7 s 0.
PRESSURE_RAMP Character Section 16.3.1
QUANTITY Character Section 16.3.1
RTI Real Section 16.3.1

√
m · s 100.

SMOKEVIEW_ID Char. Array Section 16.7.1
SMOKEVIEW_PARAMETERS Char. Array Section 16.7.2
SPEC_ID Character Section 16.3.5
SPECIFIC_HEAT Real Section 17.10.4 kJ/(kg ·K) 0.44
SPRAY_ANGLE(2,2) Real Section 16.3.1 degrees 60.,75.
SPRAY_PATTERN_BETA Real Section 16.3.1 degrees 5.
SPRAY_PATTERN_MU Real Section 16.3.1 degrees 0.
SPRAY_PATTERN_SHAPE Character Section 16.3.1 ’GAUSSIAN’

SPRAY_PATTERN_TABLE Character Section 16.3.1
VELOCITY_COMPONENT Integer Section 16.3.3

18.21 RADI (Radiation Parameters)

Table 18.21: For more information see Section 14.1.

RADI (Radiation Parameters)
ANGLE_INCREMENT Integer Section 14.1.2 5
BAND_LIMITS Real Array Section 14.2.3 µm
INITIAL_RADIATION_ITERATIONS Integer Section 14.1.2 3
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Table 18.21: Continued

RADI (Radiation Parameters)
KAPPA0 Real Section 14.2.2 1/m 0
MIE_MINIMUM_DIAMETER Real Section 14.2.2 µm 0.5
MIE_MAXIMUM_DIAMETER Real Section 14.2.2 µm 1.5×D
MIE_NDG Integer Section 14.2.2 50
NMIEANG Integer Section 14.2.2 15
NUMBER_RADIATION_ANGLES Integer Section 14.1.2 100
PATH_LENGTH Real Section 14.2.3 m
RADIATION Logical Section 14.1 .TRUE.

RADIATION_ITERATIONS Integer Section 14.1.2 1
RADTMP Real Section 14.2.2 ◦C 900
TIME_STEP_INCREMENT Integer Section 14.1.2 3
WIDE_BAND_MODEL Logical Section 14.2.3 .FALSE.

18.22 RAMP (Ramp Function Parameters)

Table 18.22: For more information see Chapter 11.

RAMP (Ramp Function Parameters)
CTRL_ID Character Section 16.6.1
DEVC_ID Character Section 16.6.1
F Real Chapter 11
ID Character Chapter 11
NUMBER_INTERPOLATION_POINTS Integer Chapter 11 5000
T Real Chapter 11 s (or ◦C)
X Real Section 6.4.6 m

18.23 REAC (Reaction Parameters)

Table 18.23: For more information see Chapter 13.

REAC (Reaction Parameters)
A Real Section 13.3
AUTO_IGNITION_TEMPERATURE Real Section 13.1.4 ◦C
C Real Section 13.1.1 0
CHECK_ATOM_BALANCE Logical Section 13.2 .TRUE.

CO_YIELD Real Section 13.1.1 kg/kg 0
CRITICAL_FLAME_TEMPERATURE Real Section 13.1.4 ◦C 1327
E Real Section 13.3 kJ/kmol
EPUMO2 Real Section 13.1.2 kJ/kg 13100
EQUATION Character Section 13.2.3
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Table 18.23: Continued

REAC (Reaction Parameters)
FORMULA Character Section 13.1.1
FUEL Character Section 13.1.1
FUEL_RADCAL_ID Character Section 13.1.1
H Real Section 13.1.1 0
HEAT_OF_COMBUSTION Real Section 13.1.2 kJ/kg
ID Character Section 13.1.1
IDEAL Logical Section 13.1.1 .FALSE.

N Real Section 13.1.1 0
NU(:) Real Array Section 13.3
N_S(:) Real Array Section 13.3
N_T Real Section 13.3
O Real Section 13.1.1 0
RADIATIVE_FRACTION Real Section 14.1.1
RAMP_CHI_R Character Section 14.1.1
REAC_ATOM_ERROR Real Section 13.2 atoms 1.E-5
REAC_MASS_ERROR Real Section 13.2 kg/kg 1.E-4
SOOT_H_FRACTION Real Section 13.1.1 0.1
SOOT_YIELD Real Section 13.1.1 kg/kg 0.0
SPEC_ID_N_S(:) Char. Array Section 13.3
SPEC_ID_NU(:) Char. Array Section 13.3
THIRD_BODY Logical Section 13.3 .FALSE.

18.24 SLCF (Slice File Parameters)

Table 18.24: For more information see Section 17.4.

SLCF (Slice File Parameters)
CELL_CENTERED Logical Section 17.4 .FALSE.

EVACUATION Logical Reference [53] .FALSE.

MAXIMUM_VALUE Real Reference [2]
MESH_NUMBER Integer Section 17.4
MINIMUM_VALUE Real Reference [2]
PART_ID Character Section 17.12
PBX, PBY, PBZ Real Section 17.4 m
QUANTITY Character Section 17.12
QUANTITY2 Character Section 17.12
SPEC_ID Character Section 17.12
VECTOR Logical Section 17.4 .FALSE.

VELO_INDEX Integer Section 17.10.17 0
XB(6) Real Sextuplet Section 17.4 m
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18.25 SPEC (Species Parameters)

Table 18.25: For more information see Section 12.

SPEC (Species Parameters)
AEROSOL Logical Section 13.5 .FALSE.

ALIAS Character Section 12.1.3
BACKGROUND Logical Section 12 .FALSE.

CONDUCTIVITY Real Section 12.1.2 W/(m ·K)
CONDUCTIVITY_SOLID Real Section 13.5 W/(m ·K) 0.26
DENSITY_LIQUID Real Section 15.3.1 kg/m3

DENSITY_SOLID Real Section 13.5 kg/m3 1800.
DIFFUSIVITY Real Section 12.1.2 m2/s
ENTHALPY_OF_FORMATION Real Section 15.3.1 kJ/mol
EPSILONKLJ Real Section 12.1.2 0
FIC_CONCENTRATION Real Section 17.10.9 ppm 0.
FLD_LETHAL_DOSE Real Section 17.10.9 ppm×min 0.
FORMULA Character Section 12.1.2
HEAT_OF_VAPORIZATION Real Section 15.3.1 kJ/kg
H_V_REFERENCE_TEMPERATURE Real Section 15.3.1 ◦C
ID Character Section 12.1.1
LUMPED_COMPONENT_ONLY Logical Section 12.2 .FALSE.

MASS_EXTINCTION_COEFFICIENT Real Section 16.3.5 0
MASS_FRACTION(:) Real Array Section 12.2 0
MASS_FRACTION_0 Real Section 12.1.1 0
MEAN_DIAMETER Real Section 13.5 m 1.E-6
MELTING_TEMPERATURE Real Section 15.3.1 ◦C
MW Real Section 12.1.2 g/mol 29.
PR_GAS Real Section 12.1.2 PR

PRIMITIVE Logical Section 12.1.2
RADCAL_ID Character Section 12.1.3
RAMP_CP Character Section 12.1.2
RAMP_CP_L Character Section 15.3.1
RAMP_D Character Section 12.1.2
RAMP_G_F Character Section 12.1.2
RAMP_K Character Section 12.1.2
RAMP_MU Character Section 12.1.2
REFERENCE_ENTHALPY Real Section 12.1.2 kJ/kg
REFERENCE_TEMPERATURE Real Section 12.1.2 ◦C 25.
SIGMALJ Real Section 12.1.2 0
SPEC_ID(:) Character Array Section 12.2
SPECIFIC_HEAT Real Section 12.1.2 kJ/(kg ·K)
SPECIFIC_HEAT_LIQUID Real Section 15.3.1 kJ/(kg ·K)
VAPORIZATION_TEMPERATURE Real Section 15.3.1 ◦C
VISCOSITY Real Section 12.1.2 kg/(m · s)
VOLUME_FRACTION(:) Real Array Section 12.2
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18.26 SURF (Surface Properties)

Table 18.26: For more information see Section 7.1.

SURF (Surface Properties)
ADIABATIC Logical Section 8.2.3 .FALSE.

BACKING Character Section 8.3.3 ’EXPOSED’

BURN_AWAY Logical Section 8.5.8 .FALSE.

CELL_SIZE_FACTOR Real Section 8.3.8 1.0
C_FORCED_CONSTANT Real Section 8.2.2 0.0
C_FORCED_PR_EXP Real Section 8.2.2 0.0
C_FORCED_RE Real Section 8.2.2 0.0
C_FORCED_RE_EXP Real Section 8.2.2 0.0
C_HORIZONTAL Real Section 8.2.2 1.52
C_VERTICAL Real Section 8.2.2 1.31
COLOR Character Section 7.4
CONVECTION_LENGTH_SCALE Real Section 8.2.2 m 1.
CONVECTIVE_HEAT_FLUX Real Section 8.2.2 kW/m2

CONVERT_VOLUME_TO_MASS Logical Section 9.1.6 .FALSE.

DEFAULT Logical Section 7.1 .FALSE.

DT_INSERT Real Section 15.5.1 s 0.01
EMISSIVITY Real Section 8.2.2 0.9
EMISSIVITY_BACK Real Section 8.3.3
EVAC_DEFAULT Logical Reference [53] .FALSE.

EXTERNAL_FLUX Real Section 8.6 kW/m2

E_COEFFICIENT Real Section 15.6 m2/(kg · s)
FREE_SLIP Logical Section 9.1.7 .FALSE.

GEOMETRY Character Section 8.3.7 ’CARTESIAN’

HEAT_OF_VAPORIZATION Real Section 8.4.3 kJ/kg
HEAT_TRANSFER_COEFFICIENT Real Section 8.2.2 W/(m2 ·K)
HEAT_TRANSFER_MODEL Character Section 8.2.2
HRRPUA Real Section 8.4.1 kW/m2

HT3D Logical Section 8.3.9 .FALSE.

ID Character Section 7.1
IGNITION_TEMPERATURE Real Section 8.4.3 ◦C 5000.
INNER_RADIUS Real Section 15.4.1 m
INTERNAL_HEAT_SOURCE Real Array Section 8.3.6 kW/m3

LAYER_DIVIDE Real Section 8.3.5 N_LAYERS/2
LEAK_PATH Int. Pair Section 9.3.2
LENGTH Real Section 15.4.1 m
MASS_FLUX(:) Real Array Section 9.1.6 kg/(m2 · s)
MASS_FLUX_TOTAL Real Section 9.1.2 kg/(m2 · s)
MASS_FLUX_VAR Real Section 9.1.9
MASS_FRACTION(:) Real Array Section 9.1.6
MASS_TRANSFER_COEFFICIENT Real Section 8.5.7 m/s
MATL_ID(NL,NC) Char. Array Section 8.5
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Table 18.26: Continued

SURF (Surface Properties)
MATL_MASS_FRACTION(NL,NC) Real Array Section 8.5
MINIMUM_LAYER_THICKNESS Real Section 8.3.8 m 1.E-6
MLRPUA Real Section 8.4.1 kg/(m2 · s)
N_LAYER_CELLS_MAX Integer Array Section 8.3.8 1000
NET_HEAT_FLUX Real Section 8.2.2 kW/m2

NO_SLIP Logical Section 9.1.7 .FALSE.

NPPC Integer Section 15.5.1 1
PARTICLE_MASS_FLUX Real Section 15.5.1 kg/(m2 · s)
PART_ID Character Section 15.5.1
PLE Real Section 10.1 0.3
PROFILE Character Section 9.5
RADIUS Real Section 15.4.1 m
RAMP_EF Character Section 11.1
RAMP_MF(:) Character Section 11.1
RAMP_PART Character Section 11.1
RAMP_Q Character Section 11.1
RAMP_T Character Section 11.1
RAMP_T_I Character Section 8.3.4
RAMP_V Character Section 11.1
RAMP_V_X Character Section 11.3
RAMP_V_Y Character Section 11.3
RAMP_V_Z Character Section 11.3
RGB(3) Int. Triplet Section 7.4 255,204,102
ROUGHNESS Real Section 9.1.7 m 0.
SPEC_ID Character Section 9.1.6
SPREAD_RATE Real Section 8.4.2 m/s
STRETCH_FACTOR(:) Real Section 8.3.8 2.
TAU_EF Real Section 11.1 s 1.
TAU_MF(:) Real Section 11.1 s 1.
TAU_PART Real Section 11.1 s 1.
TAU_Q Real Section 11.1 s 1.
TAU_T Real Section 11.1 s 1.
TAU_V Real Section 11.1 s 1.
TEXTURE_HEIGHT Real Section 7.4.2 m 1.
TEXTURE_MAP Character Section 7.4.2
TEXTURE_WIDTH Real Section 7.4.2 m 1.
TGA_ANALYSIS Logical Section 8.6.2 .FALSE.

TGA_FINAL_TEMPERATURE Real Section 8.6.2 ◦C 800.
TGA_HEATING_RATE Real Section 8.6.2 ◦C/min 5.
THICKNESS(NL) Real Array Section 8.1 m
TMP_BACK Real Section 8.3.4 ◦C 20.
TMP_FRONT Real Section 8.2.1 ◦C 20.
TMP_INNER(:) Real Array Section 8.3.4 ◦C 20.
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Table 18.26: Continued

SURF (Surface Properties)
TRANSPARENCY Real Section 7.4 1.
VEL Real Section 9.1 m/s
VEL_BULK Real Section 9.5 m/s
VEL_GRAD Real Section 9.1.5 1/s
VEL_T Real Pair Section 9.1.4 m/s
VOLUME_FLOW Real Section 9.1 m3/s
WIDTH Real Section 15.4.1 m
XYZ(3) Real Triplet Section 8.4.2 m
Z0 Real Section 10.1 m 10.

18.27 TABL (Table Parameters)

Table 18.27: For more information see Section 16.3.1.

TABL (Table Parameters)
ID Character Section 16.3.1
TABLE_DATA(9) Real Array Section 16.3.1

18.28 TIME (Time Parameters)

Table 18.28: For more information see Section 6.2.

TIME (Time Parameters)
DT Real Section 6.2.2 s
EVAC_DT_FLOWFIELD Real Reference [53] s 0.01
EVAC_DT_STEADY_STATE Real Reference [53] s 0.05
LIMITING_DT_RATIO Real Section 4.2 0.0001
LOCK_TIME_STEP Logical Section 6.2.2 .FALSE.

RESTRICT_TIME_STEP Logical Section 6.2.2 .TRUE.

T_BEGIN Real Section 6.2.1 s 0.
T_END Real Section 6.2.1 s 1.
TIME_SHRINK_FACTOR Real Section 6.2.3 1.
WALL_INCREMENT Integer Section 8.3.8 2

18.29 TRNX, TRNY, TRNZ (MESH Transformations)
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Table 18.29: For more information see Section 6.3.5.

TRNX, TRNY, TRNZ (MESH Transformations)
CC Real Section 6.3.5 m
IDERIV Integer Section 6.3.5
MESH_NUMBER Integer Section 6.3.5
PC Real Section 6.3.5

18.30 VENT (Vent Parameters)

Table 18.30: For more information see Section 7.3.

VENT (Vent Parameters)
COLOR Character Section 7.4
CTRL_ID Character Section 16.4.2
DEVC_ID Character Section 16.4.2
DYNAMIC_PRESSURE Real Section 9.4 Pa 0.
EVACUATION Logical Reference [53] .FALSE.

ID Character Section 7.3.1
IOR Integer Section 7.3.4
L_EDDY Real Section 9.1.8 m 0.
L_EDDY_IJ(3,3) Real Array Section 9.1.8 m 0.
MB Character Section 7.3.1
MESH_ID Character Reference [53]
MULT_ID Character Section 7.5
N_EDDY Integer Section 9.1.8 0
OUTLINE Logical Section 7.3.1 .FALSE.

PBX, PBY, PBZ Real Section 7.3.1
PRESSURE_RAMP Character Section 9.4
REYNOLDS_STRESS(3,3) Real Array Section 9.1.8 m2/s2 0.
RGB(3) Integer Triplet Section 7.4
SPREAD_RATE Real Section 8.4.2 m/s 0.05
SURF_ID Character Section 7.3.1 ’INERT’

TEXTURE_ORIGIN(3) Real Triplet Section 7.4.2 m (0.,0.,0.)
TMP_EXTERIOR Real Section 7.3.2 ◦C
TMP_EXTERIOR_RAMP Character Section 7.3.2
TRANSPARENCY Real Section 7.4 1.0
UVW(3) Real Triplet Section 9.2.7 m/s
VEL_RMS Real Section 9.1.8 m/s 0.
XB(6) Real Sextuplet Section 7.3.1 m
XYZ(3) Real Triplet Section 8.4.2 m

18.31 ZONE (Pressure Zone Parameters)
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Table 18.31: For more information see Section 9.3.

ZONE (Pressure Zone Parameters)
ID Character Section 9.3.1
LEAK_AREA(N) Real Section 9.3.2 m2 0
LEAK_PRESSURE_EXPONENT(N) Real Section 9.3.2 0.5
LEAK_REFERENCE_PRESSURE(N) Real Section 9.3.2 Pa 4
PERIODIC Logical Section 9.3.1 .FALSE.

XB(6) Real Sextuplet Section 9.3.1 m
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Part III

FDS and Smokeview Development Tools
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Chapter 19

The FDS/Smokeview Repository

For those interested in obtaining the FDS and Smokeview source codes, either for development work or
simply to compile on a particular platform, it is strongly suggested that you download onto your computer
the entire FDS/Smokeview “Repository.” All project documents are maintained using the online utility
GitHub, a free service that supports software development for open source applications. GitHub uses Git
version control software. Under this system, a centralized repository containing all project files resides on a
GitHub server. Anyone can obtain a copy of the repository or retrieve a specific revision of the repository.
However, only the FDS and Smokeview developers can commit changes directly to the repository. Others
must submit a “pull request.” Detailed instructions for checking out the FDS repository can be found at
https://github.com/firemodels/fds.

Both FDS and Smokeview live within a GitHub organization called “Fire Models”. The current lo-
cation of the organization is https://github.com/firemodels. The repositories that are used by the FDS and
Smokeview projects are listed below along with a brief description:

fds FDS source code, verification and validation tests, wikis, and documentation
smv Smokeview source code, integration tests, and documentation
exp Experimental data repository for FDS validation
out FDS output results for validation
bot Firebot (continuous integration system) source
fds-smv Web page html source

The Wiki Pages are particularly useful in describing the details of how you go about working with the
repository assets.

279

https://github.com/
https://github.com/firemodels/fds
https://github.com/firemodels


280



Chapter 20

Compiling FDS

If a compiled version of FDS exists for the machine on which the calculation is to be run and no changes
have been made to the original source code, there is no need to re-compile the code. For example, the file
fds.exe is the compiled program for a Windows-based PC; thus PC users do not need a Fortran compiler
and do not need to compile the source code. For machines for which an executable has not been compiled,
you must compile the code. A Fortran 2008 compliant compiler is required.

20.1 FDS Source Code

Table 20.1 lists the files that make up the FDS source code. Files with the “.f90” suffix contain free-form
Fortran 90 instructions conforming to the ANSI and ISO standards (2008 edition). A makefile is available
in the FDS-SMV Repository that contains platform specific options for compilation. Note the following:

• The source code consists entirely of Fortran statements organized into about 35 files. Some compilers
have a standard optimization level, plus various degrees of “aggressive” optimization. Be cautious in
using the highest levels of optimization.

• For the non-MPI version of FDS, compile with mpis.f90.

• The MPI version of FDS uses mpip.f90 instead of mpis.f90, plus additional MPI libraries need to be
installed. More details on MPI can be found at the FDS-SMV website, along with links to the necessary
organizations who have developed free MPI libraries.
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Table 20.1: FDS source code files

File Name Description
cons.f90 Global arrays and constants
ctrl.f90 Definitions and routines for control functions
data.f90 Data for output quantities and thermophysical properties
devc.f90 Derived type definitions and constants for devices
divg.f90 Compute the flow divergence
dump.f90 Output data dumps into files
evac.f90 Egress computations (future capability)
fire.f90 Combustion routines
func.f90 Global functions and subroutines
geom.f90 Routines supporting complex, unstructured geometry (under development)
gsmv.f90 Routines supporting complex, unstructured geometry (under development)
hvac.f90 Heating, Ventilation, and Air Conditioning
ieva.f90 Support routines for evac.f90
init.f90 Initialize variables and Poisson solver
irad.f90 Functions needed for radiation solver, including RadCal
main.f90 Main program
mass.f90 Mass equation(s) and thermal boundary conditions
mesh.f90 Arrays and constants associated with each mesh
mpip.f90 MPI “include” statement for MPI compilation
mpis.f90 “Dummy” Fortran/MPI bindings for non-MPI compilation
part.f90 Lagrangian particle transport and sprinkler activation
pois.f90 Poisson (pressure) solver
prec.f90 Specification of numerical precision
pres.f90 Spatial discretization of pressure (Poisson) equation
radi.f90 Radiation solver
read.f90 Read input parameters
samr.f90 Simplified Adaptive Mesh Refinement (under development)
scrc.f90 Alternative pressure solver (under development)
smvv.f90 Routines for computing and outputting 3D smoke and isosurfaces
soot.f90 Soot agglomeration and aerosol deposition
turb.f90 Turbulence models and manufactured solutions
type.f90 Derived type definitions
vege.f90 Experimental vegetation model
velo.f90 Momentum equations
wall.f90 Wall boundary conditions
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Chapter 21

Output File Formats

The output from the code consists of the file CHID.out, plus various data files that are described below.
Most of these output files are written out by the subroutines within dump.f90, and can easily be modified
to accommodate various plotting packages.

21.1 Diagnostic Output

The file CHID.out contains diagnostic output, including an accounting of various important quantities,
including CPU usage. Typically, diagnostic information is printed out every 100 time steps as follows:

Time Step 137431 December 27, 2015 00:29:49
Step Size: 0.563E-01 s, Total Time: 1800.04 s
Pressure Iterations: 1
Maximum Velocity Error: 0.30E-01 on Mesh 1 at ( 0 44 3)
---------------------------------------------------------------
Max CFL number: 0.94E+00 at ( 1, 46, 1)
Max divergence: 0.13E+00 at ( 66, 12, 1)
Min divergence: -0.20E+00 at ( 66, 13, 1)
Max VN number: 0.51E+00 at ( 1, 25, 18)
No. of Lagrangian Particles: 27
Radiation Loss to Boundaries: 13.830 kW

The Time Step indicates the total number of iterations. The date and time indicate the current wall clock
time. The STEP SIZE indicates the size of the numerical time step. The Total Time indicates the total
simulation time calculated up to that point. The Pressure Iterations are the number of iterations of the
pressure solver for the corrector (second) half of the time step. The pressure solver iterations are designed
to minimize the error in the normal component of velocity at solid walls or the interface of two meshes. The
Maximum Velocity Error indicates this error and in which grid cell it occurs. Max/Min divergence

is the max/min value of the function ∇ · u and is used as a diagnostic when the flow is incompressible
(i.e., no heating); Max CFL number is the maximum value of the CFL number, the primary time step
constraint; Max VN number is the maximum value of the Von Neumann number, the secondary time step
constraint. The No. of Lagrangian Particles refers to the number of particles in the current mesh.
The Radiation Loss to Boundaries is the amount of energy that is being radiated to the boundaries.
As compartments heat up, the energy lost to the boundaries can grow to be an appreciable fraction of the
Total Heat Release Rate.

Following the completion of a successful run, a summary of the CPU usage per subroutine is listed in the
file called CHID_cpu.csv (Section 21.5). This is useful in determining where most of the computational
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effort is being placed.

21.2 Heat Release Rate and Related Quantities

The heat release rate of the fire, plus other global energy-related quantities, are automatically written into a
text file called CHID_hrr.csv. The format of the file is as follows

s , kW , kW , ... , kg/s , Pa , Pa , ...
Time , HRR , Q_RADI , ... , BURN_RATE , ZONE_01 , ZONE_02 , ...
T(1) , VAL(1,1) , VAL(2,1) , ... , VAL(8,1) , VAL(9,1) , VAL(10,1) , ...
T(2) , VAL(1,2) , VAL(2,2) , ... , VAL(8,2) , VAL(9,2) , VAL(10,1) , ...

.

.

Details of the integrated energy quantities can be found in Section 17.10.1. BURN_RATE is the total mass
loss rate of fuel, and ZONE_01, etc., are the background pressures of the various pressure ZONEs. Note that
the reported BURN_RATE is not adjusted to account for the possibility that each individual material might
have a different heat of combustion. It is the actual burning rate of the fuel as predicted by FDS or specified
by you. The background pressure is discussed in Section 9.3.

21.3 Device Output Data

Data associated with particular devices (link temperatures, smoke obscuration, thermocouples, etc.) spec-
ified in the input file under the namelist group DEVC is output in comma delimited format in a file called
CHID_devc.csv. The format of the file is as follows:

s , UNITS(1) , UNITS(2) , ... , UNITS(N_DEVC)
Time , ID(1) , ID(2) , ... , ID(N_DEVC)
T(1) , VAL(1,1) , VAL(2,1) , ... , VAL(N_DEVC,1)
T(2) , VAL(1,2) , VAL(2,2) , ... , VAL(N_DEVC,2)

.

.

where N_DEVC is the number of devices, ID(I) is the user-defined ID of the Ith device, UNITS(I) the
units, T(J) the time of the Jth dump, and VAL(I,J) the value at the Ith device at the Jth time. The files
can be imported into Microsoft Excel or almost any other spreadsheet program. If the number of columns
exceeds 256, the file will automatically be split into smaller files.

21.4 Control Output Data

Data associated with particular control functions specified in the input file under the namelist group CTRL is
output in comma delimited format in a file called CHID_ctrl.csv. The format of the file is as follows:

s , status , status , ... , status
Time , ID(1) , ID(2) , ... , ID(N_CTRL)
T(1) , -001 , 001 , ... , -001

.

.
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where N_CTRL is the number of controllers, ID(I) is the user-defined ID of the Ith control function, and
plus or minus 1’s represent the state -1 = .FALSE. and +1 = .TRUE. of the Ith control function at the
particular time. The files can be imported into Microsoft Excel or almost any other spreadsheet program. If
the number of columns exceeds 256, the file will automatically be split into smaller files.

21.5 CPU Usage Data

The file called CHID_cpu.csv records the amount of CPU time for each of the MPI processes.

Rank,MAIN,DIVG, ... , Total T_USED (s)
0, 2.052E+00, 1.058E+01, ... , 5.143+01
1, 2.432E+00, 1.062E+01, ... , 5.123+01

.

.

where Rank is the number of the MPI process (starting at 0), MAIN, DIVG, and so on, are major routines, and
’Total T_USED (s)’ is the total CPU time consumed by that particular MPI process. Typically, the total
time is similar. The time spent in MAIN is essentially overhead – time spent not working on the calculation.
If you want to know if your work load is balanced, take a look at the time spent in MAIN. It should be similar
for all MPI processes. If one of the MPI processes has a noticeably smaller value for MAIN, then that process
is working on the core routines while the other processes sit idle in MAIN.

The CHID_cpu.csv file is printed out at the end of the simulation. To force it to be printed out period-
ically during the simulation, set DT_CPU on the DUMP line. Its default value is very large, meaning that by
default, the CPU information is only printed at the end of the simulation.

21.6 Gas Mass Data

The total mass of the various gas species at any instant in time is reported in the comma delimited file
CHID_mass.csv. The file consists of several columns, the first column containing the time in seconds, the
second contains the total mass of all the gas species in the computational domain in units of kg, the next
lines contain the total mass of the individual species.

You must specifically ask that this file be generated, as it can potentially cost a fair amount of CPU time
to generate. Set MASS_FILE=.TRUE. on the DUMP line to create this output file.

21.7 Slice Files

The slice files defined under the namelist group SLCF are named CHID_n.sf (n=01,02...), and are written
out unformatted, unless otherwise directed. These files are written out from dump.f90 with the following
lines:

WRITE(LUSF) QUANTITY
WRITE(LUSF) SHORT_NAME
WRITE(LUSF) UNITS
WRITE(LUSF) I1,I2,J1,J2,K1,K2
WRITE(LUSF) TIME
WRITE(LUSF) (((QQ(I,J,K),I=I1,I2),J=J1,J2),K=K1,K2)

.

.
WRITE(LUSF) TIME
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WRITE(LUSF) (((QQ(I,J,K),I=I1,I2),J=J1,J2),K=K1,K2)

QUANTITY, SHORT_NAME and UNITS are character strings of length 30. The sextuplet (I1,I2,J1,J2,K1,K2)
denotes the bounding mesh cell nodes. The sextuplet indices correspond to mesh cell nodes, or corners, thus
the entire mesh would be represented by the sextuplet (0,IBAR,0,JBAR,0,KBAR).

There is a short Fortran 90 program provided, called fds2ascii.f90, that can convert slice files into
text files that can be read into a variety of graphics packages. The program combines multiple slice files
corresponding to the same “slice” of the computational domain, time-averages the data, and writes the values
into one file, consisting of a line of numbers for each node. Each line contains the physical coordinates of
the node, and the time-averaged quantities corresponding to that node. In particular, the graphics package
Tecplot reads this file and produces contour, streamline and/or vector plots. See Section 17.11 for more
details about the program fds2ascii.

21.8 Plot3D Data

Quantities over the entire mesh can be output in a format used by the graphics package Plot3D. The Plot3D
data sets are single precision (32 bit reals), whole and unformatted. Note that there is blanking, that is,
blocked out data points are not plotted. If the statement WRITE_XYZ=.TRUE. is included on the DUMP line,
then the mesh data is written out to a file called CHID.xyz

WRITE(LU13) IBAR+1,JBAR+1,KBAR+1
WRITE(LU13) (((X(I),I=0,IBAR),J=0,JBAR),K=0,KBAR), &

(((Y(J),I=0,IBAR),J=0,JBAR),K=0,KBAR), &
(((Z(K),I=0,IBAR),J=0,JBAR),K=0,KBAR), &

(((IBLK(I,J,K),I=0,IBAR),J=0,JBAR),K=0,KBAR)

where X, Y and Z are the coordinates of the cell corners, and IBLK is an indicator of whether or not the cell
is blocked. If the point (X,Y,Z) is completely embedded within a solid region, then IBLK is 0. Otherwise,
IBLK is 1. Normally, the mesh file is not dumped.

The flow variables are written to a file called CHID_****_**.q, where the stars indicate a time at
which the data is output. The file is written with the lines

WRITE(LU14) IBAR+1,JBAR+1,KBAR+1
WRITE(LU14) ZERO,ZERO,ZERO,ZERO
WRITE(LU14) ((((QQ(I,J,K,N),I=0,IBAR),J=0,JBAR),K=0,KBAR),N=1,5)

The five channels N=1,5 are by default the temperature (◦C), the u, v and w components of the velocity
(m/s), and the heat release rate per unit volume (kW/m3). Alternate variables can be specified with the input
parameter PLOT3D_QUANTITY(1:5) on the DUMP line. Note that the data is interpolated at cell corners,
thus the dimensions of the Plot3D data sets are one larger than the dimensions of the computational mesh.

Smokeview can display the Plot3D data. In addition, the Plot3D data sets can be read into some other
graphics programs that accept the data format. This particular format is very convenient, and recognized by
a number of graphics packages.

21.9 Boundary Files

The boundary files defined under the namelist group BNDF are named CHID_n.bf (n=0001,0002...), and are
written out unformatted. These files are written out from dump.f90 with the following lines:
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WRITE(LUBF) QUANTITY
WRITE(LUBF) SHORT_NAME
WRITE(LUBF) UNITS
WRITE(LUBF) NPATCH
WRITE(LUBF) I1,I2,J1,J2,K1,K2,IOR,NB,NM
WRITE(LUBF) I1,I2,J1,J2,K1,K2,IOR,NB,NM

.

. WRITE(LUBF) TIME
WRITE(LUBF) (((QQ(I,J,K),I=11,I2),J=J1,J2),K=K1,K2)
WRITE(LUBF) (((QQ(I,J,K),I=11,I2),J=J1,J2),K=K1,K2)

.

. WRITE(LUBF) TIME
WRITE(LUBF) (((QQ(I,J,K),I=11,I2),J=J1,J2),K=K1,K2)
WRITE(LUBF) (((QQ(I,J,K),I=11,I2),J=J1,J2),K=K1,K2) .

.

QUANTITY, SHORT_NAME and UNITS are character strings of length 30. NPATCH is the number of planes (or
“patches”) that make up the solid boundaries plus the external walls. The sextuplet (I1,I2,J1,J2,K1,K2)
defines the cell nodes of each patch. IOR is an integer indicating the orientation of the patch (±1,±2,±3).
You do not prescribe these. NB is the number of the boundary (zero for external walls) and NM is the number
of the mesh. Note that the data is planar, thus one pair of cell nodes is the same. Presently, Smokeview is
the only program available to view the boundary files.

21.10 Particle Data

Coordinates and specified quantities related to tracer particles, sprinkler droplets, and other Lagrangian
particles are written to a FORTRAN unformatted (binary) file called CHID.prt5. Note that the format
of this file has changed from previous versions (4 and below). The file consists of some header material,
followed by particle data output every DT_PART seconds. The time increment DT_PART is specified on the
DUMP line. It is T_END/NFRAMES by default. The header materials is written by the following FORTRAN
code in the file called dump.f90.

WRITE(LUPF) ONE_INTEGER ! Integer 1 to check Endian-ness
WRITE(LUPF) NINT(VERSION*100.) ! FDS version number
WRITE(LUPF) N_PART ! Number of PARTicle classes
DO N=1,N_PART

PC => PARTICLE_CLASS(N)
WRITE(LUPF) PC%N_QUANTITIES,ZERO_INTEGER ! ZERO_INTEGER is a place holder
DO NN=1,PC%N_QUANTITIES

WRITE(LUPF) CDATA(PC%QUANTITIES_INDEX(NN)) ! 30 character output quantity
WRITE(LUPF) UDATA(PC%QUANTITIES_INDEX(NN)) ! 30 character output units

ENDDO
ENDDO

Note that the initial printout of the number 1 is used by Smokeview to determine the Endian-ness of the file.
The Endian-ness has to do with the particular way real numbers are written into a binary file. The version
number is used to distinguish new versus old file formats. The parameter N_PART is not the number of
particles, but rather the number of particle classes corresponding to the PART namelist groups in the input
file. Every DT_PART seconds the coordinates of the particles and droplets are output as 4 byte reals:

WRITE(LUPF) REAL(T,FB) ! Write out the time T as a 4 byte real
DO N=1,N_PART

WRITE(LUPF) NPLIM ! Number of particles in the PART class
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WRITE(LUPF) (XP(I),I=1,NPLIM),(YP(I),I=1,NPLIM),(ZP(I),I=1,NPLIM)
WRITE(LUPF) (TA(I),I=1,NPLIM) ! Integer "tag" for each particle
IF (PC%N_QUANTITIES > 0) WRITE(LUPF) ((QP(I,NN),I=1,NPLIM),NN=1,PC%N_QUANTITIES)

ENDDO

The particle “tag” is used by Smokeview to keep track of individual particles and droplets for the purpose
of drawing streamlines. It is also useful when parsing the file. The quantity data, QP(I,NN), is used by
Smokeview to color the particles and droplets. Note that it is now possible with the new format to color the
particles and droplets with several different quantities.

21.11 Profile Files

The profile files defined under the namelist group PROF are named CHID_prof_nn.csv (nn=01,02...), and
are written out formatted. These files are written out from dump.f90 with the following line:

WRITE(LU_PROF) T,NWP+1,(X_S(I),I=0,NWP),(Q(I),I=0,NWP)

After the time T, the number of node points is given and then the node coordinates. These are written out at
every time step because the wall thickness and the local solid phase mesh may change over time due to the
solid phase reactions. Array Q contains the values of the output quantity, which may be wall temperature,
density or component density.

21.12 3-D Smoke Files

3-D smoke files contain alpha values used by Smokeview to draw semi-transparent planes representing
smoke and fire. FDS outputs 3-D smoke data at fixed time intervals. A pseudo-code representation of the
3-D smoke file is given by:

WRITE(LU_SMOKE3D) ONE,VERSION,0,NX-1,0,NY-1,0,NZ-1
.
.

WRITE(LU_SMOKE3D_SIZE,*)TIME,NCHARS_IN,NCHARS_OUT
WRITE(LU_SMOKE3D)TIME
WRITE(LU_SMOKE3D)NCHARS_IN,NCHARS_OUT
IF (NCHARS_OUT > 0)WRITE(LU_SMOKE3D)(BUFFER_OUT(I),I=1,NCHARS_OUT)

The first ONE is an endian flag. Smokeview uses this number to determine whether the computer creating the
3-D smoke file and the computer viewing the 3-D smoke file use the same or different byte swap (endian)
conventions for storing floating point numbers. The opacity data is converted from 4 byte floating point
numbers to one byte integers then compressed using run-length encoding (RLE). The compressed data is
contained in BUFFER_OUT. Run-length encoding is a compression scheme where repeated “runs” of data
are replaced with a number (number of repeats), and the value repeated. Four or more consecutive iden-
tical characters are represented by #nc where # is a special character denoting the beginning of a repeated
sequence, n is the number of repeats and c is the character repeated. n can be up to 254 (255 is used to
represent the special character). Characters not repeated four or more times are listed as is. For example,
the character string aaaaaabbbbbcc is encoded as #6a#5bcc.
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21.13 Geometry, Isosurface Files

Both immersed geometric surfaces (generalized obstructions) and FDS generated isosurfaces are stored
using a file format described in this section. Iso-surface files are used to store one or more surfaces where
the specified QUANTITY is a specified value. FDS outputs iso-surface data at fixed time intervals. These
surfaces are defined in terms of vertices and triangles. A vertex consists of an (x,y,z) coordinate. A triangle
consists of 3 connected vertices. The file format allows one to specify objects that change with time. Static
geometry is defined once and displayed by Smokeview unchanged at each time step. Dynamic geometry is
defined at each time step either in terms of nodes and faces or in terms of a translation and two rotations
(azimuthal and elevation) of dynamic geometry defined in the first time step. These files are written out
from dump.f90 using lines equivalent to the following:

! header

WRITE(LU_GEOM) ONE
WRITE(LU_GEOM) VERSION
WRITE(LU_GEOM) N_FLOATS
IF (N_FLOATS>0) WRITE(LU_GEOM) (FLOAT_HEADER(I),I=1,N_FLOATS)
WRITE(LU_GEOM) N_INTS
IF (N_INTS>0) WRITE(LU_GEOM) (INT_HEADER(I),I=1,N_INTS)

! static geometry - geometry specified once and appearing at all time steps

WRITE(LU_GEOM) N_VERT_S, N_FACE_S
IF (N_VERT_S>0) WRITE(LU_GEOM) (Xvert_S(I),Yvert_S(I),Zvert_S(I),I=1,N_VERT_S)
IF (N_FACE_S>0) WRITE(LU_GEOM) (FACE1_S(I),FACE2_S(I),FACE3_S(I),I=1,N_FACE_S)
IF (N_FACE_S>0) WRITE(LU_GEOM) (SURF_S(I),I=1,N_FACE_S)

! dynamic geometry - geometry specified and appearing for each time step

WRITE(LU_GEOM) STIME, GEOM_TYPE
IF (GEOM_TYPE.EQ.0) THEN

WRITE(LU_GEOM) N_VERT_D, N_FACE_D
IF (N_VERT_D>0) WRITE(LU_GEOM) (Xvert_D(I),Yvert_D(I),Zvert_D(I),I=1,N_VERT_D)
IF (N_FACE_D>0) WRITE(LU_GEOM) (FACE1_D(I),FACE2_D(I),FACE3_D(I),I=1,N_FACE_D)
IF (N_FACE_D>0) WRITE(LU_GEOM) (SURF_D(I),I=1,N_FACE_D)

ELSE IF (GEOM_TYPE.EQ.1) THEN
! rotation and translation parameters used to transform geometry from first
! dynamic time step
WRITE(LU_GEOM) Xtran, Ytran, Ztran, Xrot0, Yrot0, Zrot0, rot_az, rot_elev

ENDIF
.
.

• ONE has the value 1. Smokeview uses this number to determine whether the computer creating the
geometry file and the computer viewing the geometry file use the same or different byte swap (endian)
conventions for storing floating point numbers.

• VERSION currently has value 0 and indicates the version number of this file format.

• N_FLOATS, N_INTS The number of floating point and integer data items stored at the beginning of the
file.

• FLOAT_HEADER, INT_HEADER Floating point and integer data stored at the beginning of the file.
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• STIME is the FDS simulation time.

• N_VERT_S, N_FACE_S, N_VERT_D, N_FACE_D are the number of static and dynamic vertices and
faces.

• Xvert_S, Yvert_S, Zvert_S, Xvert_D, Yvert_D, Zvert_D are the static and dynamic ver-
tex coordinates.

• FACE1_S, FACE2_S, FACE3_S,FACE1_D, FACE2_D, FACE3_D are the static and dynamic vertex
indices for each face (triangle). The indices are numbered relative to how vertices were written out
earlier.

• SURF_S, SURF_D are the static and dynamic SURF indices for each face (triangle).

• GEOM_TYPE is flag indicating how dynamic geometry is represented. If GEOM_TYPE is 0 then time
dependent geometry is written out in terms of nodes and faces using the same format as the static
geometry. If GEOM_TYPE is 1 then time dependent geometry is written out in terms of a translation and
two rotations. These transformations are applied to the dynamic geometry defined at the first time step.

• Xtran, Ytran, Ztran is the translation applied to the initial dynamic geometry (If GEOM_TYPE is
1)

• Xrot0, Yrot0, Zrot0 is the origin about which rotations occur.

• rot_az, rot_elev are the azimuthal and elevation rotation angles (in degrees) applied to the initial
dynamic geometry.

21.14 Geometry Data Files

The geometry data file contains a description of data values computed by FDS on an immersed geometrical
objects. This file is analogous to the boundary file. The data written out to a geometry data file MUST
correspond to the geometry written out in the corresponding geometry file. Geometry data files are written
out from dump.f90 with the lines equivalent to the following:

WRITE(LU_GEOM_DATA) ONE
WRITE(LU_GEOM_DATA) VERSION
WRITE(LU_GEOM_DATA) STIME
WRITE(LU_GEOM_DATA) N_VERT_S_VALS,N_VERT_D_VALS,N_FACE_S_VALS,N_FACE_D_VALS
IF (N_VERT_S_VALS>0) WRITE(LU_GEOM_DATA) (ValVertStatic(I), I=1,N_VERT_S_VALS)
IF (N_VERT_D_VALS>0) WRITE(LU_GEOM_DATA) (ValVertDynamic(I),I=1,N_VERT_D_VALS)
IF (N_FACE_S_VALS>0) WRITE(LU_GEOM_DATA) (ValFaceStatic(I), I=1,N_FACE_S_VALS)
IF (N_FACE_D_VALS>0) WRITE(LU_GEOM_DATA) (ValFaceDynamic(I),I=1,N_FACE_D_VALS)

.

.

The data values written out in this file correspond to the geometry written out in the geometry file.

• ONE has the value 1. Smokeview uses this number to determine whether the computer creating the
geometry file and the computer viewing the geometry file use the same or different byte swap (endian)
conventions for storing floating point numbers.

• VERSION currently has value 0 and indicates the version number of this file format.

• STIME is the FDS simulation time.
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• N_VERT_S_VALS, N_FACE_S_VALS is the number of data values written out for static vertices and
faces. One can write out data values located at nodes, located at the center of faces or both.

• N_VERT_D_VALS, N_FACE_D_VALS is the number of dynamic values written out for dynamic vertices
and faces. One can write out data values located at nodes, located at the center of faces, both or neither
(if there is no dynamic geometry).

• ValVertStatic, ValFaceStatic static vertex and face data.

• ValVertDynamic, ValFaceDynamic dynamic vertex and face data.
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