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Preface

This document provides the theoretical basis for the Fire Dynamics Simulator (FDS), following the general
framework set forth in the “Standard Guide for Evaluating the Predictive Capability of Deterministic Fire
Models,” ASTM E 1355 [1]. It is the first of a four volume set of companion documents, referred to
collectively as the FDS Technical Reference Guide [2]. Volumes 2, 3 and 4 describe the model verification,
experimental validation, and configuration management, respectively.

A separate document, Fire Dynamics Simulator, User’s Guide [3] describes how the FDS software is
actually used.
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Disclaimer

The US Department of Commerce makes no warranty, expressed or implied, to users of the Fire Dynamics
Simulator (FDS), and accepts no responsibility for its use. Users of FDS assume sole responsibility under
Federal law for determining the appropriateness of its use in any particular application; for any conclusions
drawn from the results of its use; and for any actions taken or not taken as a result of analysis performed
using these tools.

Users are warned that FDS is intended for use only by those competent in the fields of fluid dynamics,
thermodynamics, heat transfer, combustion, and fire science, and is intended only to supplement the in-
formed judgment of the qualified user. The software package is a computer model that may or may not have
predictive capability when applied to a specific set of factual circumstances. Lack of accurate predictions
by the model could lead to erroneous conclusions with regard to fire safety. All results should be evaluated
by an informed user.

Throughout this document, the mention of computer hardware or commercial software does not con-
stitute endorsement by NIST, nor does it indicate that the products are necessarily those best suited for the
intended purpose.
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Chapter 1

Introduction

Howard Baum, NIST Fellow Emeritus

The idea that the dynamics of a fire might be studied numerically dates back to the beginning of the com-
puter age. Indeed, the fundamental conservation equations governing fluid dynamics, heat transfer, and
combustion were first written down over a century ago. Despite this, practical mathematical models of fire
(as distinct from controlled combustion) are relatively recent due to the inherent complexity of the problem.
Indeed, in his brief history of the early days of fire research, Hoyt Hottel noted “A case can be made for fire
being, next to the life processes, the most complex of phenomena to understand” [4].

The difficulties revolve about three issues: First, there are an enormous number of possible fire scenarios
to consider due to their accidental nature. Second, the physical insight and computing power required to
perform all the necessary calculations for most fire scenarios are limited. Any fundamentally based study
of fires must consider at least some aspects of bluff body aerodynamics, multi-phase flow, turbulent mixing
and combustion, radiative transport, and conjugate heat transfer; all of which are active research areas in
their own right. Finally, the “fuel” in most fires was never intended as such. Thus, the mathematical models
and the data needed to characterize the degradation of the condensed phase materials that supply the fuel
may not be available. Indeed, the mathematical modeling of the physical and chemical transformations of
real materials as they burn is still in its infancy.

In order to make progress, the questions that are asked have to be greatly simplified. To begin with,
instead of seeking a methodology that can be applied to all fire problems, we begin by looking at a few
scenarios that seem to be most amenable to analysis. Hopefully, the methods developed to study these “sim-
ple” problems can be generalized over time so that more complex scenarios can be analyzed. Second, we
must learn to live with idealized descriptions of fires and approximate solutions to our idealized equations.
Finally, the methods should be capable of systematic improvement. As our physical insight and computing
power grow more powerful, the methods of analysis can grow with them.

To date, three distinct approaches to the simulation of fires have emerged. Each of these treats the
fire as an inherently three dimensional process evolving in time. The first to reach maturity, the “zone”
models, describe compartment fires. Each compartment is divided into two spatially homogeneous volumes,
a hot upper layer and a cooler lower layer. Mass and energy balances are enforced for each layer, with
additional models describing other physical processes appended as differential or algebraic equations as
appropriate. Examples of such phenomena include fire plumes, flows through doors, windows and other
vents, radiative and convective heat transfer, and solid fuel pyrolysis. Descriptions of the physical and
mathematical assumptions behind the zone modeling concept are given in separate papers by Jones [5] and
Quintiere [6], who chronicle developments through 1983. Model development since then has progressed to
the point where documented and supported software implementing these models are widely available [7].

The relative physical and computational simplicity of the zone models has led to their widespread use in
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the analysis of fire scenarios. So long as detailed spatial distributions of physical properties are not required,
and the two layer description reasonably approximates reality, these models are quite reliable. However, by
their very nature, there is no way to systematically improve them. The rapid growth of computing power
and the corresponding maturing of computational fluid dynamics (CFD), has led to the development of CFD
based “field” models applied to fire research problems. Virtually all this work is based on the conceptual
framework provided by the Reynolds-averaged form of the Navier-Stokes equations (RANS), in particular
the k−ε turbulence model pioneered by Patankar and Spalding [8]. The use of CFD models has allowed the
description of fires in complex geometries, and the incorporation of a wide variety of physical phenomena.
However, these models have a fundamental limitation for fire applications – the averaging procedure at the
root of the model equations.

RANS models were developed as a time-averaged approximation to the conservation equations of fluid
dynamics. While the precise nature of the averaging time is not specified, it is clearly long enough to require
the introduction of large eddy transport coefficients to describe the unresolved fluxes of mass, momentum
and energy. This is the root cause of the smoothed appearance of the results of even the most highly resolved
fire simulations. The smallest resolvable length scales are determined by the product of the local velocity
and the averaging time rather than the spatial resolution of the underlying computational grid. This property
of RANS models is typically exploited in numerical computations by using implicit numerical techniques
to take large time steps.

Unfortunately, the evolution of large eddy structures characteristic of most fire plumes is lost with
such an approach, as is the prediction of local transient events. It is sometimes argued that the averaging
process used to define the equations is an “ensemble average” over many replicates of the same experiment
or postulated scenario. However, this is a moot point in fire research since neither experiments nor real
scenarios are replicated in the sense required by that interpretation of the equations. The application of
“Large Eddy Simulation” (LES) techniques to fire is aimed at extracting greater temporal and spatial fidelity
from simulations of fire performed on the more finely meshed grids allowed by ever faster computers.

The phrase LES refers to the description of turbulent mixing of the gaseous fuel and combustion prod-
ucts with the local atmosphere surrounding the fire. This process, which determines the burning rate in
most fires and controls the spread of smoke and hot gases, is extremely difficult to predict accurately. This
is true not only in fire research but in almost all phenomena involving turbulent fluid motion. The basic
idea behind the LES technique is that the eddies that account for most of the mixing are large enough to be
calculated with reasonable accuracy from the equations of fluid dynamics. The hope (which must ultimately
be justified by comparison to experiments) is that small-scale eddy motion can either be crudely accounted
for or ignored.

The equations describing the transport of mass, momentum, and energy by the fire-induced flows must
be simplified so that they can be efficiently solved for the fire scenarios of interest. The general equations of
fluid dynamics describe a rich variety of physical processes, many of which have nothing to do with fires.
Retaining this generality would lead to an enormously complex computational task that would shed very
little additional insight on fire dynamics. The simplified equations, developed by Rehm and Baum [9], have
been widely adopted by the larger combustion research community, where they are referred to as the “low
Mach number” combustion equations. They describe the low speed motion of a gas driven by chemical
heat release and buoyancy forces. Oran and Boris provide a useful discussion of the technique as applied
to various reactive flow regimes in the chapter entitled “Coupled Continuity Equations for Fast and Slow
Flows” in Ref. [10]. They comment that “There is generally a heavy price for being able to use a single
algorithm for both fast and slow flows, a price that translates into many computer operations per time step
often spent in solving multiple and complicated matrix operations.”

The low Mach number equations are solved numerically by dividing the physical space where the fire
is to be simulated into a large number of rectangular cells. Within each cell the gas velocity, temperature,
etc., are assumed to be uniform; changing only with time. The accuracy with which the fire dynamics can
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be simulated depends on the number of cells that can be incorporated into the simulation. This number is
ultimately limited by the computing power available. Present day, single processor desktop computers limit
the number of such cells to at most a few million. This means that the ratio of largest to smallest eddy
length scales that can be resolved by the computation (the “dynamic range” of the simulation) is on the
order of 100. Parallel processing can be used to extend this range to some extent, but the range of length
scales that need to be accounted for if all relevant fire processes are to be simulated is roughly 104 to 105

because combustion processes take place at length scales of 1 mm or less, while the length scales associated
with building fires are of the order of tens of meters. The form of the numerical equations discussed below
depends on which end of the spectrum one wants to capture directly, and which end is to be ignored or
approximated.
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Chapter 2

Overview of the FDS Model

This chapter presents the governing equations of FDS and an outline of the general solution procedure.
Details are included in subsequent chapters. The purpose of this chapter is to highlight aspects of the
solution methodology that make it practical for thermally-driven flow simulations, in particular fire. Some
of the major features of the model, in its default operation, are:

• Low Mach, large-eddy simulation (LES)

• Explicit, second-order, kinetic-energy-conserving numerics

• Structured, uniform, staggered grid

• Simple immersed boundary method for treatment of flow obstructions

• Generalized “lumped species” method (simplified chemistry using a reaction progress variable)

• Deardorff eddy viscosity subgrid closure

• Constant turbulent Schmidt and Prandtl numbers

• Eddy dissipation concept (fast chemistry) for single-step reaction between fuel and oxidizer

• Gray gas radiation with finite volume solution to the radiation transport equation

The model, however, is not limited to these simple algorithms. For example, the user may specify multiple
reactions, finite-rate chemistry, a wide-band radiation model, and a variety of other special features. The
more detailed physics incur increased computational cost and it is incumbent on the user to justify the added
expense in terms of improved accuracy for a particular application. The default model options have been
selected based on results from a wide variety of full-scale validation experiments [11].

The algorithm outlined below has evolved over roughly three decades. Initially, it was designed to
study buoyant plumes in the Boussinesq limit; that is, the fluid was assumed incompressible but included
a source term for buoyancy. This approach was based on a long tradition in fire research of modeling
smoke movement using dyed salt water introduced into a tank filled with fresh water. Eventually, this
approach proved too limiting, but some of the major features of the algorithm, like the low Mach number
approximation, were retained.
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2.1 LES Formalism

The equations for large-eddy simulation (LES) are derived by applying a low-pass filter, parameterized by
a width ∆, to the transport equations for mass, momentum and energy. For our purposes, it is sufficient to
think of the filtered fields in the LES equations as cell means. For example, in 1D the filtered density for a
cell of width ∆ is

ρ̄(x, t) =
1
∆

∫ x+∆/2

x−∆/2
ρ(r, t)dr. (2.1)

In FDS, the filter width ∆ is equivalent to the local cell size δx and is a key parameter in the submodels for the
turbulent viscosity and the reaction time scale discussed later. The practice of taking ∆= δx is called implicit
filtering. It is important to appreciate, however, that implicit filtering does not imply dissipative numerics.
FDS employs kinetic-energy-conserving central difference schemes for momentum with physically-based
closures for the turbulent stress. In what follows, the filter formalism is relaxed (the overline notation is
suppressed for clarity) since no explicit filtering operations are performed in the algorithm. A detailed
derivation of the formal LES equations is presented in Chapter 4.

2.2 Numerical Grid

FDS is designed to be used by practicing engineers for a variety of fire protection and other thermal flow
applications. Therefore, it must be relatively fast and robust, and it must be easy to describe the scenario.
This means that the user should only have to specify a small number of numerical parameters, focusing
instead on the physical description of the problem. Because the computational domain usually encompasses
a volume within a building, or the entire building itself, the most obvious and simplest numerical grid is
rectilinear. In fact, because FDS is a large eddy simulation (LES) model, uniform meshing is preferred, and
the only numerical parameters chosen by the end user are the three dimensions of the grid. Once established,
it is relatively simple to define rectangular obstructions that define the geometry to the level of resolution
determined by the grid. These obstructions “snap” to the underlying grid, a very elementary form of an
immersed boundary method (IBM).

The governing equations are approximated using second-order accurate finite differences on a collection
of uniformly spaced three-dimensional grids. Multiple meshes can be processed in parallel using Message
Passing Interface (MPI) libraries. Scalar quantities are assigned to the center of each grid cell; vector
components are assigned at the appropriate cell faces. This is what is commonly referred to as a staggered
grid [12, 13]. Its main purpose is to avoid “checker-boarding” in pressure-velocity coupling by naturally
representing the pressure cell velocity divergence, a very important thermodynamic quantity in the model.

2.3 Mass and Species Transport

The most basic description of the chemistry of fire is a reaction of a hydrocarbon fuel with oxygen that pro-
duces carbon dioxide and water vapor. Because fire is a relatively inefficient combustion process involving
multiple fuel gases that contain more than just carbon and hydrogen atoms, the number of gas species to
keep track of in the simulation is almost limitless. However, to make the simulations tractable, we limit
the number of fuels to one, usually, and the number of reactions to just one or two. We also leave open
the possibility that the reaction may not proceed for lack of sufficient oxygen in the incoming air stream, as
when a fire in a closed compartment extinguishes itself. Even with this simplified approach to the chem-
istry, we still need to track at least six gas species (Fuel, O2, CO2, H2O, CO, N2) plus soot particulate. If
we assume a single-step reaction, we do not need to solve explicitly seven transport equations. In fact, we
only need to solve two – one for the fuel and one for the products. The air is everything that is neither fuel
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nor products. However, to ensure realizability of species mass fractions, our strategy is to solve a transport
equation for each species mass density and then to obtain the mixture mass density by summation of the
species densities.

Whereas the fuel is usually a single gas species, the air and products are what are often referred to as
“lumped species”. A lumped species represents a mixture of gas species that transport together (i.e., the
lumped species has a single set of transport properties) and react together, and from the point of view of the
numerical model, a lumped species can be treated as a single species. In fact, the mass transport equations
make no distinction between a single or lumped species. For example, air is a lumped species that consists
of nitrogen, oxygen, and trace amounts of water vapor and carbon dioxide. We use the symbols ZA, ZF , and
ZP to denote the mass fractions of air, fuel and products. The lumped species mass fractions are linearly
related to the primitive species mass fractions, Yα ; thus, conversion from one to the other is a simple matter
of performing a matrix multiplication. For example, the complete combustion of methane:

CH4 +2 (O2 +3.76N2)→ CO2 +2H2O+7.52N2 (2.2)

is expressed as
Fuel+2Air→ Products (2.3)

and the primitive species can be recovered from the lumped species via
0.77 0.00 0.73
0.23 0.00 0.00
0.00 1.00 0.00
0.00 0.00 0.15
0.00 0.00 0.12


 ZA

ZF
ZP

=


YN2

YO2

YCH4

YCO2

YH2O

 (2.4)

Notice that the columns of the matrix are the mass fractions of the primitive species within a given lumped
species.

The transport equation for each of the lumped species has the same form as the transport equation for a
single species:

∂

∂ t
(ρZα)+∇· (ρZαu) = ∇· (ρDα∇Zα)+ ṁ′′′α + ṁ′′′b,α (2.5)

Note that the source term on the right hand side represents the addition of mass from evaporating droplets
or other subgrid-scale particles that represent sprinkler and fuel sprays, vegetation, and any other type of
small, unresolvable object. These objects are assumed to occupy no volume; thus they are seen by the
governing equations as point sources of mass, momentum, and energy. It is important to note, however, that
the evaporated mass species must be one for which an explicit transport equation is solved. For example,
water vapor is a product of combustion, but it is also formed by evaporating sprinkler droplets. In cases such
as these, there needs to be an explicit transport equation for water vapor to distinguish between that which
is formed by combustion and that which is evaporated from the droplets. Here ṁ′′′b,α is the production rate of
species α by evaporating droplets or particles.

The mass density is obtained from ρ = ∑(ρZ)α . The summation of Eq. (2.5) over all Ns species gives

∂ρ

∂ t
+∇· (ρu) = ṁ′′′b (2.6)

because ∑Zα = 1 and ∑ ṁ′′′α = 0 and ∑ ṁ′′′b,α = ṁ′′′b , by definition, and because it is assumed that ∑ρDα∇Zα =
0. This last assertion is not true, in general. The diffusive flux for the most abundant local species is corrected
to enforce the constraint.
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Enforcing Realizability Realizability of species mass fractions requires Yα ≥ 0 for all α and ∑Yα = 1.
Note that this is more restrictive than the boundedness constraint, which simply requires 0≤ Yα ≤ 1.

If (ρY )α obeys boundedness, (ρY )α ≥ 0, and we solve Ns species equations obtaining the density via
ρ =∑

Ns
α=1(ρY )α , then mass fractions obtained by Yα = (ρY )α/ρ are guaranteed to be realizable (for ρ > 0).

Thus, we have reduced the realizability problem to the “easier” problem of boundedness for (ρY )α . Details
of the scalar boundedness correction are discussed in Appendix H.

With this approach we must take care to ensure ∑ρDα∇Zα = 0. Our strategy is to absorb any errors in
diffusive transport into the most abundant species locally. That is, for a given cell face we set ρDm∇Zm =
−∑α 6=m ρDα∇Zα , where m is the most abundant species adjacent to that face. Note that since FDS is
typically used as an LES code mass transport by molecular diffusion may be two or three orders of magnitude
less than turbulent transport, which uses the same turbulent diffusion coefficient for all species. Therefore,
the errors in summation of the diffusive fluxes tend to be small.

2.4 Low Mach Number Approximation

Rehm and Baum [9] observed that for low speed applications like fire, the spatially and temporally resolved
pressure, p, can be decomposed into a “background” pressure, p(z, t), plus a perturbation, p̃(x,y,z, t), with
only the background pressure retained in the equation of state (ideal gas law):

p = ρT R∑
α

Zα

Wα

≡ ρRT
W

(2.7)

Note that z is the spatial coordinate in the direction of gravity; thus, the stratification of the atmosphere
is included in the background pressure. The perturbation, p̃, drives the fluid motion. This approximation
has a number of consequences. First, building compartments connected via a heating, ventilation, and air
conditioning (HVAC) system can each maintain individual background pressures. The air flows between
compartments can be described in terms of the differences in the background pressures, eliminating the
need to solve detailed flow equations within the ventilation ducts.

The second consequence of the low Mach number approximation is that the internal energy, e, and
enthalpy, h, may be related in terms of the thermodynamic (background) pressure: h = e+ p/ρ . The energy
conservation equation may then be written in terms of the sensible enthalpy, hs:

∂

∂ t
(ρhs)+∇· (ρhsu) =

Dp
Dt

+ q̇′′′+ q̇′′′b −∇· q̇′′ (2.8)

The term q̇′′′ is the heat release rate per unit volume from a chemical reaction. The term q̇′′′b is the energy
transferred to subgrid-scale droplets and particles. The term q̇′′ represents the conductive, diffusive, and
radiative heat fluxes:

q̇′′ =−k∇T −∑
α

hs,α ρ Dα∇Zα + q̇′′r (2.9)

where k is the thermal conductivity and Dα is the diffusivity of species α .
Eq. (2.8) is not solved explicitly. Instead, the velocity divergence is factored out as follows:

∇ ·u =
1

ρhs

[
D
Dt

(p−ρhs)+ q̇′′′+ q̇′′′r + q̇′′′b −∇ · q̇′′
]

(2.10)

The hydrodynamics solver guarantees that Eq. (2.10) is satisfied. It follows that Eq. (2.8) is also satisfied
(energy is conserved).

Expanding the material derivatives on the right hand side of Eq. (2.10) produces a fairly complicated
expression for the divergence that includes the source and diffusion terms from the mass, species, and
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energy conservation equations. Its importance to the overall algorithm is that it can be computed using only
the thermodynamic variables ρ , Zα , and p. As will be shown below, the way to advance the flow velocity in
time is to first estimate the thermodynamic variables at the next time step, compute the divergence, and then
solve an equation for the pressure that will guarantee that the divergence of the updated velocity is identical
to that computed solely from the thermodynamic variables.

2.5 Momentum Transport

Noting the vector identity (u ·∇)u = ∇|u|2/2− u×ω , and defining the stagnation energy per unit mass,
H ≡ |u|2/2+ p̃/ρ , the momentum equation can be written (see Chapter 4 for a detailed derivation)

∂u
∂ t
−u×ω +∇H− p̃∇(1/ρ) =

1
ρ

[
(ρ−ρ0)g+ fb +∇· τ

]
(2.11)

The term fb represents the drag force exerted by the subgrid-scale particles and droplets. The viscous stress,
τ , is closed via gradient diffusion with the turbulent viscosity obtained from the Deardorff eddy viscosity
model [14, 15]. It is convenient to write Eq. (2.11) in the form:

∂u
∂ t

+F+∇H = 0 (2.12)

so that a Poisson equation for the pressure can be derived by taking its divergence:

∇
2H =−

[
∂

∂ t
(∇·u)+∇·F

]
(2.13)

Note the appearance of the time derivative of the divergence. This is an important feature of the time
marching scheme. Note also that the right hand side of the Poisson equation retains a term that includes
the perturbation pressure, p̃∇(1/ρ). This term accounts for the baroclinic torque. It is included on the
right hand side of the Poisson equation by using its value from the previous time step. This approximation
allows us to solve a separable form of the Poisson equation, for which there are fast, direct solvers that are
optimized for uniform grids [16].

2.6 Combustion and Radiation

FDS is described as a “fire model” because it incorporates source terms and boundary conditions that de-
scribe the turbulent combustion of gaseous fuel and oxygen, the transport of thermal radiation through hot,
soot-laden gases, the thermal decomposition of real materials, the activation of sprinklers and smoke detec-
tors, the transport of water and liquid fuel droplets, and a variety of other features that describe fires inside
and outside of buildings.

Combustion and radiation are introduced into the governing equations via the source terms, q̇′′′ and q̇′′′r ,
in the energy transport equation. Since the energy equation is not solved explicitly, these terms find their
way into the expression for the divergence.

2.6.1 Combustion

For most applications, FDS uses a combustion model based on the mixing-limited, infinitely fast reaction
of lumped species. Lumped species are reacting scalar quantities that represent a mixture of species. For
example, air is a lumped species which is a mixture of nitrogen, oxygen, water vapor, and carbon dioxide.
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The reaction of fuel and oxygen is not necessarily instantaneous and complete, and there are several optional
schemes that are designed to predict the extent of combustion in under-ventilated spaces.

For an infinitely-fast reaction, reactant species in a given grid cell are converted to product species at a
rate determined by a characteristic mixing time, τmix. The heat release rate per unit volume is defined by
summing the lumped species mass production rates times their respective heats of formation

q̇′′′ =−∑
α

ṁ′′′α ∆hf,α (2.14)

Details of τmix and ṁ′′′α are discussed in Chapter 5.

2.6.2 Radiation

The net contribution from thermal radiation in the energy equation is defined by:

q̇′′′r ≡−∇· q̇′′r (x) = κ(x) [U(x)−4π Ib(x)] ; U(x) =
∫

4π

I(x,s′)ds′ (2.15)

where κ(x) is the absorption coefficient, Ib(x) is the source term, and I(x,s) is the solution of the radiation
transport equation (RTE) for a non-scattering gray gas:

s ·∇I(x,s) = κ(x) [Ib(x)− I(x,s)] (2.16)

In practical simulations, the spectral dependence of I, Ib, and κ cannot be resolved accurately, nor do we
have reliable data for non-ideal fuels typical of real fires. While FDS does have an option to divide the
radiation spectrum into a relatively small number of bands and solve a separate RTE for each band, it is
usually not necessary because in real fires, soot is the dominant source and sink of thermal radiation and
is not particulary sensitive to wavelength. The mean absorption coefficient, κ , is a function of species
composition and temperature. Its values are obtained from a narrow-band model called RadCal [17].

The source term, Ib, requires special treatment because of the limited resolution of the underlying numer-
ical grid in the vicinity of flames. In large scale fire simulations, grid cells are typically on the order of tens
of centimeters. Flame sheets cannot be resolved, meaning that the computed cell-average temperature can
be significantly lower than temperatures one would expect to find in the reacting flame. Consequently, the
source term is approximated in grid cells where fuel and oxygen react. Elsewhere, the subgrid temperature
field is homogeneous and the source term can be computed directly:

κ Ib =

{
κ σ T 4/π Outside flame zone, q̇′′′ = 0

C κ σ T 4/π Inside flame zone, q̇′′′ > 0
(2.17)

The constant C is computed at each time step so that the volume integral of Eq. (2.15) over the entire flaming
region is approximately equal to the volume integral of χr q̇′′′ over that same region. Here, χr is an empirical
estimate of the global fraction of that energy emitted as thermal radiation. Typically, a sooty fire radiates
approximately one-third of the total combustion energy.

The radiation equation is solved using a technique similar to a finite volume method for convective
transport, thus the name given to it is the Finite Volume Method (FVM). Using approximately 100 discrete
angles which are updated over multiple time steps, the finite volume solver requires about 20% of the total
CPU time of a calculation, a modest cost given the complexity of radiation heat transfer.

Water droplets can absorb and scatter thermal radiation. This is important in scenarios involving water
mist suppression systems, but also plays a role in all sprinkler cases. The absorption and scattering coeffi-
cients are based on Mie theory. The scattering from the gaseous species and soot is considered negligible
and is not included in the model.
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2.7 Solution Procedure

In a given grid cell at the nth time step, we have the density, ρn, lumped species mass fractions, Zn
α , velocity

vector, un, and the Bernoulli integral, Hn. In addition, for each compartment in the computational domain,
we have a background pressure, pn. The temperature is found from the equation of state. These variables
are advanced in time using an explicit second-order predictor/corrector scheme. The basic procedure is as
follows:

Predictor

1. Estimate ρ , Zα , and p at the next time step with an explicit Euler step. The species mass density is
estimated by

(ρZ)∗α −ρnZn
α

δ t
+∇·ρn Zn

α un = ∇· (ρnDn
α∇Zn

α)+(ṁ′′′α + ṁ′′′b,α)
n (2.18)

The asterisk denotes a first order accurate estimate at the next time step. Note that the mass source
terms are computed in the previous time step using the corrected value of the density and species mass
fractions.

2. Compute the density from ρ∗ = ∑α(ρZα)
∗ and mass fractions from Z∗α = (ρZ)∗α/ρ∗.

3. Compute the temperature, T ∗, from the equation of state.

4. Compute the divergence, (∇·u)∗, from Eq. (2.10) using the estimated thermodynamic quantities. Note
that we use the parentheses to emphasize that an estimate of the velocity field, u∗, at the next time step
has not been computed yet, only its divergence.

5. Solve the Poisson equation for the pressure term:

∇
2Hn =−(∇·u)∗−∇·un

δ t
−∇·Fn (2.19)

6. Estimate the velocity at the next time step.

u∗−un

δ t
+Fn +∇Hn = 0 (2.20)

Note that this procedure guarantees that the divergence of the estimated velocity field, ∇·u∗, is identi-
cally equal to the divergence that is derived from the estimated thermodynamic quantities, (∇·u)∗, in
Step 4.

7. Check that the time step, δ t, satisfies the stability condition (see Sec. 4.5). If the time step is too large,
it is reduced so that it satisfies the stability constraint and the procedure returns to the beginning of the
time step. If the stability criterion is satisfied, the procedure continues to the corrector step.

Corrector

1. Correct the transported species mass densities at the next time step.

(ρZα)
n+1− 1

2 (ρ
nZn

α +ρ∗Z∗α)
δ t/2

+∇·ρ∗Z∗αu∗ = ∇· (ρ∗D∗α∇Z∗α)+(ṁ′′′α + ṁ′′′b,α)
n (2.21)

The background pressure is corrected similarly. Note that the mass source terms are the same as those
added in the predictor step. They are only computed once per time step.
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2. Compute the density ρn+1 = ∑α(ρZα)
n+1 and mass fractions Zn+1

α = (ρZα)
n+1/ρn+1.

3. Compute the temperature, T n+1, from the equation of state.

4. Time splitting for mass source terms. After the corrector step for the transport scheme, source terms are
computed and stored. The source terms are evaluated using the results from the corrected scalar transport
scheme. The source terms include the heat release rate per unit volume, q̇′′′, the net absorption/emittance
of thermal radiation, ∇ · q̇′′, and the mass species source terms, ṁ′′′α . In addition, the terms in the
divergence expression, Eq. (B.7), involving the source terms are computed and stored. All of these
quantities are computed at this point in the time step and applied in both the predictor and corrector
steps of the following time step.

5. Compute the divergence, (∇·u)n+1, from the corrected thermodynamic quantities.

6. Compute the pressure using the estimated quantities.

∇
2H∗ =−

[
(∇ ·u)n+1− 1

2 (∇ ·u
∗+∇ ·un)

δ t/2

]
−∇·F∗ (2.22)

7. Correct the velocity at the next time step.

un+1− 1
2 (u

∗+un)

δ t/2
+F∗+∇H∗ = 0 (2.23)

Note again that the divergence of the corrected velocity field is identically equal to the divergence that
was computed in Step 5.
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Chapter 3

Mass, Species, and Enthalpy Transport

This chapter describes in detail the equation of state in the low Mach number limit, the finite difference
approximation of the mass and species conservation equations, and the role of the flow divergence as a
surrogate for the enthalpy transport equation. Due to the use of the low Mach number approximation, the
energy conservation equation is not solved explicitly but rather is defined implicitly via the divergence of
the flow field, which contains the combustion and radiation source terms.

3.1 The Equation of State

A distinguishing feature of a CFD model is the regime of flow speeds (relative to the speed of sound) for
which it is designed. High speed flow codes involve compressibility effects and shock waves. Low speed
solvers, however, explicitly eliminate compressibility effects that give rise to acoustic (sound) waves. The
Navier-Stokes equations describe the propagation of information at speeds comparable to that of the fluid
flow (for fire, approximately 10 m/s), but also at speeds comparable to that of sound waves (for still air,
300 m/s). Solving a discretized form of these equations would require extremely small time steps in order
to account for information traveling at the speed of sound, making practical simulations difficult.

Following the work of Rehm and Baum [9], an approximation to the equation of state is made by decom-
posing the pressure into a “background” component and a perturbation. It is assumed that the background
component of pressure can differ from compartment to compartment. If a volume within the computational
domain is isolated from other volumes, except via leak paths or ventilation ducts, it is referred to as a “pres-
sure zone” and assigned its own background pressure. The pressure field within the mth zone, for example,
is a linear combination of its background component and the flow-induced perturbation:

p(x, t) = pm(z, t)+ p̃(x, t) (3.1)

Note that the background pressure is a function of z, the vertical spatial coordinate, and the time, t. For most
compartment fire applications, pm changes very little with height or time. However, for scenarios where a
fire increases the pressure in a closed compartment, or where the HVAC system affects the pressure, or when
the height of the domain is significant, pm takes these effects into account [18]. The ambient pressure field
is denoted p0(z). Note that the subscript 0 denotes the exterior of the computational domain, not time 0.
This is the assumed atmospheric pressure stratification that serves as both the initial and boundary condition
for the governing equations.

The purpose of decomposing the pressure is that for low Mach number flows, it can be assumed that the
temperature and density are inversely proportional, and thus the equation of state (in the mth pressure zone)
can be approximated as

pm = ρT R∑
α

Zα

Wα

=
ρT R
W

(3.2)
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Recall from Section 2.3 that Zα is the mass fraction of lumped species α . The pressure, p, in the state and
energy equations is replaced by the background pressure pm to filter out sound waves that travel at speeds
that are much faster than typical flow speeds expected in fire applications. The low Mach number assumption
serves two purposes. First, the filtering of acoustic waves means that the time step in the numerical algorithm
is bound only by the flow speed as opposed to the speed of sound, and second, the modified state equation
leads to a reduction in the number of dependent variables in the system of equations by one. The energy
equation (2.8) is not explicitly solved; rather, its source terms are included in the expression for the flow
divergence, to be discussed later in the chapter. When the velocity field satisfies the specified thermodynamic
divergence, the conservative form of the sensible enthalpy equation is satisfied by construction.

The stratification of the atmosphere is derived from the relation

dp0

dz
=−ρ0(z)g (3.3)

where ρ0 is the background density and g = 9.8 m/s. Using Eq. (3.2), the background pressure can be
written as a function of the background temperature, T0(z),

p0(z) = p∞ exp
(
−
∫ z

z∞

W g
RT0(z′)

dz′
)

(3.4)

where the subscript infinity generally refers to the ground. A linear temperature stratification of the atmo-
sphere may be specified by the user such that T0(z) = T∞ +Γz where T∞ is the temperature at the ground
and Γ is the lapse rate (e.g., Γ = −0.0098 K/m is the adiabatic lapse rate). In this case p0 and ρ0 are
derived from Eqs. (3.4) and (3.2), respectively. It can then be shown that for Γ 6= 0 the pressure stratification
becomes

p0(z) = p∞

(
T0(z)

T∞

)Wg/RΓ

(3.5)

3.2 Mass and Species Transport

The species transport equations are solved using a predictor-corrector scheme. Advection terms are written
in flux divergence (conservative) form. In the predictor step, the mass density in cell i jk at time level n+1
is estimated based on information at the nth level:

(ρZα)
∗
i jk− (ρZα)

n
i jk

δ t
+∇· (ρZα

FLu)n
i jk = ∇· (ρDα∇Zα)

n
i jk +

(
ṁ′′′α + ṁ′′′b,α

)n
i jk (3.6)

The quantity ρZα

FL indicates a flux limiter applied to the cell face value, as discussed below in Section
3.2.1. The mass source terms due to chemistry, evaporation, or pyrolysis are computed at the end of the
previous time step and used in both the predictor and corrector steps. The mean chemical source term, ṁ′′′α ,
is discussed in Chapter 5. The bulk subgrid source term, ṁ′′′b,α , is discussed in Chapters 7 and 8 on solid
phase pyrolysis and Lagrangian particles, respectively.

In DNS mode, the molecular diffusivity is based on mixture-averaged binary Fickian diffusion. In LES
mode (default) the diffusivity is taken from the molecular and turbulent viscosities divided by the turbulent
Schmidt number. That is, to save cost we approximate the molecular plus turbulent diffusivity by (µ +
µt)/Sct . The turbulent Schmidt number is constant with default value Sct = 0.5. The model for the turbulent
viscosity µt is discussed in Section 4.2. Optionally, in LES mode, by setting RESEARCH_MODE=.TRUE. on
MISC, the molecular and turbulent transport coefficients are treated separately, ρDα +µt/Sct (at added cost).
The same applies for the thermal diffusivity.
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The corrector step is as follows:

(ρZα)
n+1
i jk −

1
2

[
(ρZα)

n
i jk +(ρZα)

∗
i jk

]
1
2 δ t

+∇· (ρZα

FLu)∗i jk = ∇· (ρDα∇Zα)
∗
i jk +

(
ṁ′′′α + ṁ′′′b,α

)n
i jk (3.7)

3.2.1 Flux Limiters

A flux limiter is an interpolation scheme for defining mass fluxes at cell faces. Simple linear interpolation
of the cell-centered scalar variables to the cell face would result in a central difference scheme. Such purely
centered schemes are known to generate intolerable levels of dispersion error (spurious wiggles) leading to
unphysical results such as negative densities or mass fractions outside the range of [0,1]. To address this
issue, FDS relies on two schemes: a flux limiter (discussed below) that handles the bulk of the problem,
and a flux correction (see Appendix H) that adds the minimum amount of numerical diffusion to maintain
boundedness.

For uniform flow velocity, a fundamental property of the exact solution to the equations governing scalar
transport is that the total variation of the scalar field (the sum of the absolute values of the scalar differences
between neighboring cells) is either preserved or diminished (never increased). In other words, no new
extrema are created. Numerical schemes which preserve this property are referred to as total variation
diminishing (TVD) schemes. The practical importance of using a TVD scheme for fire modelling is that
such a scheme is able to accurately track coherent vortex structure in turbulent flames and does not develop
spurious reaction zones.

FDS employs two second-order TVD schemes as options for scalar transport: Superbee and CHARM.
Superbee [19] is recommended for LES because it more accurately preserves the scalar variance for coarse
grid solutions that are not expected to be smooth. Due to the gradient steepening applied in Superbee,
however, the convergence degrades at small grid spacing for smooth solutions (the method will revert to
a stair-step pattern instead of the exact solution). CHARM [20], though slightly more dissipative than
Superbee, is convergent, and is therefore the better choice for DNS calculations where the flame front is
well resolved.

To illustrate how flux limiters are applied to the scalar transport equations, below we discretize the
advection terms in Eq. (2.5) in one dimension:

(ρZ)∗i − (ρZ)n
i

δ t
+

ρZFL
i+ 1

2
ui+ 1

2
−ρZFL

i− 1
2
ui− 1

2

δx
= ... (3.8)

Note that the ±1
2 suffixes indicates a face value for a particular cell i. A flux-limited scalar value (density

in this case) premultiplies the staggered, face-centered velocity to form the scalar advective flux. Recall
that these velocity values are primitive variables in the calculation—they are not interpolated. Consider face
i+ 1

2 between cells i and i+ 1 and let φ denote a general scalar variable, like ρZα . The local (loc) and
upstream (up) data variations are

δφloc = φi+1−φi (3.9)

δφup =

{
φi−φi−1 if ui > 0
φi+2−φi+1 if ui < 0

(3.10)

The limiter function B(r) depends on the upstream-to-local data ratio, r = δφup/δφloc. In FDS, options for
the limiter function include [21]:
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Flux Limiter B(r)
Central Difference 1
Godunov 0
MINMOD max(0,min(1,r))
Superbee [19] (LES default) max(0,min(2r,1),min(r,2))
CHARM [20] (DNS default) s(3s+1)/(s+1)2; s = 1/r
MP5 [22] see below

For the Central Difference, Godunov, MINMOD, and Superbee limiters, the scalar face value is found from

φ
FL
i+1/2 =

{
φi + B(r) 1

2 δφloc if ui > 0

φi+1 − B(r) 1
2 δφloc if ui < 0

(3.11)

For CHARM, the face value is given by [23]

φ
FL
i+1/2 =

{
φi + B(r) 1

2 δφup if ui > 0

φi+1 − B(r) 1
2 δφup if ui < 0

(3.12)

The MP5 scheme of Suresh and Huynh [22] is based on the keen observation that three points cannot
distinguish between extrema and discontinuities. The functional form of the limiter is not as simple as the
three-point schemes described above, so we refer the reader to the original paper or the FDS source code for
details. But the basic idea behind the method is to use a five-point stencil, three upwind and two downwind,
to reconstruct the cell face value, considering both accuracy and monotonicity-preserving constraints. An
additional benefit of the MP5 scheme is that it was designed specifically with strong stability-preserving
(SSP) Runge-Kutta time discretizations in mind. The predictor-corrector scheme used by FDS is similar to
the second-order SSP scheme described in [24].

Notes on Implementation

In practice, we set r = 0 initially and only compute r if the denominator is not zero. Note that for δφloc = 0,
it does not matter which limiter is used: all the limiters yield the same scalar face value. For CHARM, we
set both r = 0 and B = 0 initially and only compute B if r > 0 (this requires data variations to have the same
sign). Otherwise, CHARM reduces to Godunov’s scheme.

The Central Difference, Godunov, and MINMOD limiters are included for completeness, debugging,
and educational purposes. These schemes have little utility for typical FDS applications.

3.2.2 Time Splitting for Mass Source Terms

Following the corrector step of the transport scheme, source terms are applied to the scalars. The source
terms are typically related to particle evaporation or combustion, and these processes are computed at the
end of the time step. In the case of combustion, the total mass of a grid cell is not changed; rather the species
mass fractions change. For particle evaporation, mass is simply added to the cell, particle by particle, and
the species mass fractions are adjusted accordingly:

(ρZα)
n+1
i jk = (ρZα)

∗∗
i jk +δ t

(
ṁ′′′α + ṁ′′′b,α

)
i jk (3.13)

The mean chemical source term, ṁ′′′α , is discussed in Chapter 5. The bulk subgrid source term, ṁ′′′b,α , is
discussed in Chapters 7 and 8 on solid phase pyrolysis and Lagrangian particles, respectively.
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3.2.3 Boundary Conditions for Temperature, Species Mass Fraction, and Density

The gas temperature, species mass fractions, and density are computed at the center of each grid cell. At an
exterior boundary, or at the boundary of an interior obstruction, these values must be computed at the face
of the cell that falls at the boundary interface. In general, the temperature at the boundary, Tw, is computed
first, followed by species mass fractions, Zα,w, followed by density, ρw. The density is typically determined
from the equation of state:

ρw =
pm

RTw ∑α(Zα,w/Wα)
(3.14)

Here, pm denotes the background pressure of the gas phase region.
When necessary, the boundary value is linearly extrapolated one half of a grid cell into the “ghost” cell

for use by the gas phase solver. In the sections below, the value at the center of the gas phase cell adjacent to
the boundary is denoted with the subscript “g” (for “gas phase”, not “ghost”), and the value at the boundary
by “w” (for “wall”).

Solid Boundaries

At a solid boundary, the surface temperature, Tw, is either specified or computed as described in Chapter 7.
For an LES calculation, the convective heat flux at the surface is determined via an empirical heat transfer
coefficient, h, and the convective heat flux at the boundary is written:

k
Tg−Tw

δn/2
= h (Tg−Tw) (3.15)

where δn/2 is the distance between the surface and the center of the adjacent gas phase cell. The convective
heat transfer coefficient, h, is described in Section 7.1.2. For a DNS calculation, the convective heat transfer
is determined directly from the computed or specified surface temperature.

There is no transfer of mass at a solid boundary; thus, the boundary value for the species mixture α is
simply

Zα,w = Zα,g (3.16)

Open Boundaries

The term “open” denotes a non-solid exterior boundary of the computational domain. Gases are allowed
to flow freely in and out. At these boundaries, the temperature and species mass fractions take on their
respective exterior values if the flow is incoming, and take on their respective values in the grid cell adjacent
to the boundary if the flow is outgoing. This is a simple upwind boundary condition.

Specified Mass Flux

Here, the mass flux of species α , ṁ′′α , is specified or computed as part of the overall solid phase calculation.
To determine the mass fraction of species mixture α at the boundary, Zα, f , the following equations must be
solved iteratively

∑
α

ṁ′′α = ρwun (3.17)

ṁ′′α = unρwZα,w− (ρDα)w
Zα,g−Zα,w

δn/2
(3.18)

where un is the normal component of velocity at the wall pointing into the flow domain and δn/2 is the
distance between the center of the gas cell and the wall. Together with the equation of state, Eqs. (3.17) and
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(3.18) are solved iteratively for the unknowns ρw, un, and Zα,w. The surface temperature used in the EOS
depends on the thermal boundary condition.

Mesh Interface Boundaries

In simulations involving more than one numerical mesh, information has to be passed between meshes, even
when the meshes are being processed by separate computers. If two meshes abut each other, and the mesh
cells are aligned and the same size, then one mesh simply uses the density and species mass fractions of the
adjacent mesh as the “ghost” cell values. However, in cases where the mesh cells are not the same size, the
exchange of information must be done more carefully. Consider a case where two meshes meet:

Mesh 1 Mesh 2

We want the total and species mass fluxes between meshes to be the same. Let the density in cell (1, j′,k′) of
Mesh 2 be denoted ρ

(2)
1, j′k′ . Assume that this cell abuts two cells in Mesh 1. The densities in the two abutting

cells of Mesh 1 are denoted ρ
(1)
I, jk. Note that j and k are not the same as j′ and k′. I is the number of cells

in the x direction of Mesh 1. The ghost cell quantities in Mesh 1 have an i index of I + 1. The ghost cell
quantities in Mesh 2 have an i index of 0. We want to assert mass conservation at the mesh interface:

∑
j,k

u(1)I, jk ρ
(1)
w, jk δy(1) δ z(1) = u(2)0, j′k′ ρ

(2)
w, j′k′ δy(2) δ z(2) (3.19)

To enforce this condition, we obtain ρ
(1)
w, jk on Mesh 1 and ρ

(2)
w, j′k′ on Mesh 2 from a flux limiter (see Section

3.2.1) once data has been exchanged between meshes. Since only one layer of ghost cells is exchanged, the
second upwind data value is linearly extrapolated to maintain second-order accuracy of the interpolated face
density.

3.3 The Velocity Divergence

Because of the low Mach number assumption, the velocity divergence (the rate of volumetric expansion)
plays an important role in the overall solution scheme. In the FDS algorithm, the divergence is a surrogate
for the energy equation. The divergence is factored out of the conservative form of the sensible enthalpy
equation (see Appendix B) and when the divergence constraint is satisfied (enforced by the momentum
update and solution of the Poisson equation for pressure) the conservative form of the sensible enthalpy
equation is satisfied by construction.

For the mth zone, with background pressure pm, the divergence may be written as

∇·u = D−P
∂ pm

∂ t
(3.20)

where

P =
1
pm
− 1

ρcpT
(3.21)
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and

D =
1

ρcpT

[
q̇′′′+ q̇′′′b + q̇′′′r −∇ · q̇′′−u ·∇(ρhs)+wρ0gz

]
+

1
ρ

∑
α

(
W
Wα

− hs,α

cpT

)[
∇ · (ρDα∇Yα)−u ·∇(ρYα)+ ṁ′′′α

]

+
1
ρ

∑
α

(
W
Wα

−
∫ T

Tb
cp,α(T ′)dT ′

cpT

)
ṁ′′′b,α (3.22)

3.3.1 Mass and Energy Source Terms

The volumetric source terms in the divergence expression require extended discussion. The heat release
rate per unit volume, q̇′′′, and the mass generation rate of species α per unit volume, ṁ′′′α , are detailed
in Chapter 5, Combustion. The radiative source, q̇′′′r , is discussed in Chapter 6, Thermal Radiation. The
bulk heat source from Lagrangian particles, q̇′′′b , which accounts for convective heat transfer and radiative
absorption, is discussed in Chapter 8, Lagrangian Particles. The bulk mass source from Lagrangian particles,
ṁ′′′b,α , is also found in Chapter 8.

The source terms are computed in the corrector stage of the time step, following the update of the density
and species mass fractions. The terms in Eq. (3.22) involving q̇′′′b , ṁ′′′α , and ṁ′′′b,α are stored in an array called
D_SOURCE and applied in the construction of the divergence expression required for the corrected update of
the velocity.

3.3.2 Diffusion Terms

The thermal and material diffusion terms of Eq. (3.22) are pure second-order central differences. For exam-
ple, the thermal conduction term is differenced as follows:

(∇· k∇T )i jk =
1

δx

[
ki+ 1

2 , jk
Ti+1, jk−Ti jk

δx
− ki− 1

2 , jk
Ti jk−Ti−1, jk

δx

]
+

1
δy

[
ki, j+ 1

2 ,k
Ti, j+1,k−Ti jk

δy
− ki, j− 1

2 ,k
Ti jk−Ti, j−1,k

δy

]
+

1
δ z

[
ki j,k+ 1

2

Ti j,k+1−Ti jk

δ z
− ki j,k− 1

2

Ti jk−Ti j,k−1

δ z

]
(3.23)

The thermal conductivity at the cell interface, denoted by the 1
2 cell index, is the average of its values in the

two adjacent cells.

3.3.3 Corrections for Numerical Mixing

The differencing of the convection terms, u ·∇(ρhs) and u ·∇(ρYα), is complex. If not handled carefully,
subtle issues related to numerical diffusion in the scalar transport schemes can cause significant conservation
errors in the implied energy equation. The proper discretization of these terms is discussed in Appendix B.
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3.3.4 Computing the Temperature

The mean cell gas temperature, T , is derived from the density and species mass fractions via the equation of
state:

Ti jk =
pm

ρi jkR ∑
Ns
α=0(Zα,i jk/Wα)

(3.24)

3.3.5 Sensible Enthalpy

The sensible enthalpy of the gas is a mass-weighted average of the enthalpies of the lumped species (denoted
by α), which are in turn a mass-weighted average of the enthalpies of the individual gas species (denoted by
n):

hs = ∑
α

Zα hs,α ; hs,α = ∑
n

Yn hs,n ; hs,n(T ) =
∫ T

T0

cp,n(T ′)dT ′ (3.25)

The values of hs,n and cp,n for the individual gas species are obtained by table lookup from the NIST-JANAF
tables [25]. The values are taken to the nearest degree Kelvin.

3.3.6 Computing the Background Pressure Rise

To describe how the background pressure of the mth pressure zone, pm, is updated in time, consider the
expression for the divergence written in compact notation:

∇·u = D−P
∂ pm

∂ t
(3.26)

The terms D and P are defined by Eqs. (3.22) and (3.21), respectively. The subscript m refers to the number
of the pressure zone; that is, a volume within the computational domain that is allowed to have its own
background pressure rise. A closed room within a building, for example, is a pressure zone. The time
derivative of the background pressure of the mth pressure zone is found by integrating Eq. (3.26) over the
zone volume (denoted by Ωm):

∂ pm

∂ t
=

(∫
Ωm

D dV −
∫

∂Ωm

u · dS
)/∫

Ωm

P dV (3.27)

Equation (3.27) is essentially a consistency condition, ensuring that blowing air or starting a fire within a
sealed compartment leads to an appropriate decrease in the divergence within the volume.

3.3.7 Combining Pressure Zones

In the event that a barrier separating two pressure zones should rupture, Eq. (3.27) is modified so that the
pressure in the newly connected zones is driven towards an equilibrium pressure:

peq = ∑
m

(
pm

∫
Ωm

P dV
)/

∑
m

∫
Ωm

P dV ≈ ∑mVm

∑m(Vm/pm)
(3.28)

Note that ∫
Ωm

P dV ≈ Vm

γ pm
(3.29)

where Vm is the volume of zone m and γ is the ratio of specific heats. To drive the pressure within the
connected zones towards each other, a volume flow, V̇ ∗m, is applied to each zone. This flow is intended
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to move gas from zones with the higher pressures towards zones with lower pressures. Eq. (3.27) now
becomes:

∂ peq

∂ t
−

pm− peq

τ
=

(∫
Ωm

D dV −
∫

∂Ωm

u · dS−V̇ ∗m

)/∫
Ωm

P dV (3.30)

This equation is solved for V̇ ∗m. The first term on the left is the change in the equilibrium pressure with time:

∂ peq

∂ t
=

(
∑
m

∫
Ωm

D dV −∑
m

∫
∂Ωm

u · dS
)/

∑
m

∫
Ωm

P dV (3.31)

The summation is over all connected zones, and it is essentially the net change in pressure with time for the
entire connected region. If there is any opening to the exterior of the computational domain, this term is set
to zero and all connected zone pressures are driven towards ambient. The second term on the left forces the
pressure in the mth pressure zone towards the equilibrium. The constant, τ , is a characteristic time for the
pressure to come into equilibrium. Its default value is on the order of 1 s. In reality, room pressures typically
come into equilibrium very rapidly, but air movements associated with rapid changes in pressure can cause
numerical instabilities.

Note: Because of the low Mach number assumption, FDS should not be used for rapid discharge of
pressure vessels.
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Chapter 4

Momentum Transport and Pressure

This chapter describes the solution of the momentum equation. This consists of three major parts: the LES
formulation, the discretization of the flux terms, and the solution of an elliptic partial differential equation
for the pressure.

4.1 Large Eddy Simulation (LES)

In this section, we temporarily return to formal LES filter notation and adopt Cartesian tensor index notation
(repeated suffixes imply summation) in order to precisely define modeled terms. The LES equations are
derived by applying a low-pass filter of width ∆ to the DNS equations. The kernel usually associated with
finite volume LES is a box filter—grid resolved quantities are physically interpreted as cell means. This
interpretation is somewhat misleading (see [26]), but a thorough discussion of filtering is beyond our scope,
so the cell mean interpretation will suffice. In FDS, the filter width is taken to be the cube root of the cell
volume, ∆ =V 1/3

c , Vc = δxδyδ z. Then for any continuous field, φ , a filtered field is defined as

φ(x,y,z, t)≡ 1
Vc

∫ x+δx/2

x−δx/2

∫ y+δy/2

y−δy/2

∫ z+δ z/2

z−δ z/2
φ(x′,y′,z′, t)dx′ dy′ dz′ (4.1)

It is also conventional to define a mass-weighted or Favre filter such that ρ φ̃ ≡ ρφ .

4.1.1 The DNS Momentum Equation

In conservative form, the DNS momentum equation for the ith component of velocity is

∂ρui

∂ t
+

∂

∂x j
(ρuiu j) =−

∂ p
∂xi
−

∂τi j

∂x j
+ρgi + fd,i + ṁ′′′b ub,i (4.2)

In our two-phase formulation, fd,i represents the drag force due to unresolved Lagrangian particles. The
bulk source term, ṁ′′′b ub,i, accounts for the effects of evaporation or pyrolysis. For Eq. (4.2) to be applicable,
the grid resolution should be smaller than the Kolmogorov scale, η , the length scale of the smallest turbulent
eddies [15],

η ≡ (ν3/ε)1/4 (4.3)

Here, ν is the kinematic viscosity and ε is the rate of viscous dissipation (the conversion of kinetic energy
to heat by viscosity),

ε ≡ τi j
∂ui

∂x j
= 2µ

(
Si jSi j−

1
3
(∇·u)2

)
; Si j ≡

1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
(4.4)
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In fire scenarios, η is usually on the order of one millimeter. DNS is therefore impractical for all but
special research flame calculations.

4.1.2 The LES Momentum Equation

For domain sizes ranging from meters to kilometers, the affordable grid resolution for most LES fire calcu-
lations ranges from centimeters to meters. The goal of the LES is to evolve the cell mean values of mass,
momentum, and energy explicitly, while accounting for the effects that subgrid transport and chemistry have
on the mean fields. To this end, we apply the box filter to the DNS equations to obtain the filtered equations.
As an example, consider the momentum equation. Applying Eq. (4.1) to Eq. (4.2) results in

∂ρui

∂ t
+

∂

∂x j
(ρuiu j) =−

∂ p
∂xi
−

∂τ i j

∂x j
+ρgi + f̄d,i + ṁ′′′b ub,i (4.5)

The cell mean value, ρuiu j, is not itself a primitive variable in the calculation—we have no way of computing
the term under the bar to advance Eq. (4.5) in time. We must, therefore, decompose the terms, and this leads
to closure problems.

The next step is simply to apply the Favre filter,

∂ ρ ũi

∂ t
+

∂

∂x j
(ρ ũiu j) =−

∂ p
∂xi
−

∂τ i j

∂x j
+ρgi + f̄d,i + ṁ′′′b ũb,i (4.6)

The first term is now separable, provided we have a solution for ρ . But we still have no way to compute the
correlation ũiu j on the grid. We cannot simply use ũiũ j as a substitute (this is the old problem of “the mean
of the square does not equal the square of the mean”). Instead, we define the subgrid-scale (SGS) stress:

τ
sgs
i j ≡ ρ(ũiu j− ũiũ j) (4.7)

Substituting Eq. (4.7) into Eq. (4.6) yields

∂ ρ ũi

∂ t
+

∂

∂x j
(ρ ũiũ j) =−

∂ p
∂xi
−

∂τ i j

∂x j
−

∂τ
sgs
i j

∂x j
+ρgi + f̄d,i + ṁ′′′b ũb,i (4.8)

Equation (4.8) is what is typically referred to as the LES momentum equation (analogous to the Cauchy
equation—constitutive models have not been applied). All variables are primitive or computable once we
find a suitable closure for the subgrid scale stress, τ

sgs
i j .

Constitutive Relationship

There are a few more modifications we need to make in order to get Eq. (4.8) into shape for FDS. The first
is to decompose the SGS stress and apply Newton’s law of viscosity as the constitutive relationship for the
deviatoric part. Note that τ i j is already the deviatoric part of the viscous stress. We model the total deviatoric
stress as

τ
dev
i j ≡ τ i j + τ

sgs
i j −

1
3

τ
sgs
kk δi j =−2(µ +µt)

(
S̃i j−

1
3
(∇ · ũ)δi j

)
(4.9)

Note that δi j is the Kronecker delta (δi j = 1 if i = j, δi j = 0 if i 6= j). The turbulent viscosity, µt , requires
modeling, as discussed below.
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Modified Pressure Term

In LES of low-Mach flows, the isotropic part of the SGS stress must be absorbed by the pressure term.
Define the subgrid kinetic energy as half the trace of the SGS stress,

ksgs ≡
1
2

τ
sgs
kk (4.10)

and define the modified filtered pressure [15] as

p̄≡ p+
2
3

ksgs (4.11)

Upon substitution of Eqs. (4.9) and (4.11) into Eq. (4.8), we have

∂ ρ ũi

∂ t
+

∂

∂x j
(ρ ũiũ j) =−

∂ p̄
∂xi
−

∂τdev
i j

∂x j
+ρgi + f̄d,i + ṁ′′′b ũb,i (4.12)

Notice that Eq. (4.12) closely resembles the DNS momentum equation, Eq. (4.2). For this reason, we may
relax the filter formalism as we discuss the numerical details of the algorithm. The user should simply
understand that in the LES context when we write τi j we mean precisely τdev

i j , and similarly for pressure in
LES p refers to p̄.

Bulk Mass Source Term

When writing the momentum equation in non-conservative form, which we will do below, we must account
for the introduction of mass from subgrid particles (evaporation of water droplets, for example). Using the
continuity equation, Eq. (2.6), we can rewrite Eq. (4.12) as follows:

ρ
Dũi

Dt
=− ∂ p̄

∂xi
−

∂τdev
i j

∂x j
+ρgi + f̄d,i + ṁ′′′b (ũb,i− ũi)︸ ︷︷ ︸

f̄b,i

(4.13)

The last term in Eq. (4.13) is absorbed into the bulk subgrid force term, f̄b,i, which also accounts for drag,
as discussed in Chapter 8 on Lagrangian Particles.

4.1.3 Production of Subgrid Kinetic Energy

The transport equation for the resolved kinetic energy per unit mass, K ≡ 1
2 ũiũi, is derived by dotting the

LES momentum equation with the resolved velocity vector. The result is

ρ
DK
Dt

=−ũi
∂ p̄
∂xi
− ũi

∂τdev
i j

∂x j
+(ρgi + f̄b,i)ũi

ρ
DK
Dt

+
∂

∂x j
([p̄δi j + τ

dev
i j ]ũi) = p̄

∂ ũi

∂xi
+ τ

dev
i j

∂ ũi

∂x j
+(ρgi + f̄b,i)ũi (4.14)

The terms on the left hand side represent transport. The terms on the right hand side are sources or sinks
of kinetic energy. Of particular interest in LES is the production of subgrid kinetic energy, buried in the
second RHS term. The effect of this term is to transfer energy between the resolved and unresolved scales
of motion. In the classical picture of the “energy cascade”, the net transfer of energy is from large to small
scales, where ultimately the motions are dissipated as heat by viscosity. In LES, however, this term may also
be a source of energy, a phenomenon called backscatter. An issue that makes designing subgrid closures
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for LES challenging is that, far from being the exception, backscatter is ubiquitous and often critical to the
formation of large-scale motions (think of subgrid buoyancy-generated turbulence, e.g., the Rayleigh-Taylor
instability) [27]. Most simple LES subgrid closures take production of subgrid kinetic energy to be equal to
the dissipation of total kinetic energy. Using gradient diffusion for SGS closure, this assumption implies the
following:

τ
dev
i j

∂ ũi

∂x j
=−2(µ +µt)

(
S̃i j−

1
3
(∇ · ũ)δi j

)
∂ ũi

∂x j

=−2(µ +µt)

(
S̃i j−

1
3
(∇ · ũ)δi j

)
S̃i j

=−2(µ +µt)

(
S̃i jS̃i j−

1
3
(∇ · ũ)2

)
=−2µ

(
Si jSi j−

1
3
(∇ ·u)2

)
≡ ε (4.15)

Using a model kinetic energy spectrum (see [15]), Eq. (4.15) can be used to derive theoretical values for
model constants, such as the Smagorinsky constant, discussed below.

26



4.2 Models for the Turbulent Viscosity

In LES, the “turbulence model” refers to the closure for SGS flux terms. In FDS, gradient diffusion is the
turbulence model used to close both the SGS momentum and scalar flux terms. We then require a model for
the turbulent transport coefficient: the turbulent (or eddy) viscosity or the turbulent (or eddy) diffusivity. The
turbulent diffusivity is obtained using a constant Schmidt number (for mass diffusivity) or Prandtl number
(for thermal diffusivity), as discussed below, and so the most important transport coefficient is the turbulent
viscosity, µt. There are several different options available that are described in this section. The Deardorff
model, Section 4.2.3, is the default. Its selection as the default was based on comparisons with a wide variety
of full-scale experiments.

4.2.1 Constant Coefficient Smagorinsky Model

Following the analysis of Smagorinsky [28], the eddy viscosity can be modeled as follows:

µt = ρ (Cs ∆)2 |S| ; |S|=
(

2Si jSi j−
2
3
(∇·u)2

) 1
2

(4.16)

where Cs = 0.2 is a constant and ∆ = (δxδyδ z)1/3 is the filter width. This model was used in FDS versions
1 through 5.

4.2.2 Dynamic Smagorinsky Model

For the dynamic Smagorinsky model [29, 30], the coefficient Cs in Eq. (4.16) is no longer taken as a constant,
but rather computed based on local flow conditions.

4.2.3 Deardorff’s Model (Default)

By default, FDS uses a variation of Deardorff’s model [14]:

µt = ρ Cν ∆
√

ksgs ; ksgs =
1
2
(
(ū− ˆ̄u)2 +(v̄− ˆ̄v)2 +(w̄− ˆ̄w)2) (4.17)

where ū is the average value of u at the grid cell center (representing the LES filtered velocity at length scale
∆) and ˆ̄u is a weighted average of u over the adjacent cells (representing a test-filtered field at length scale
2∆):

ūi jk =
ui jk +ui−1, jk

2
; ˆ̄ui jk =

ūi jk

2
+

ūi−1, jk + ūi+1, jk

4
(4.18)

The terms ˆ̄v and ˆ̄w are defined similarly. The model constant is set to the literature value Cν = 0.1 [15].
The algebraic form of subgrid kinetic energy is based on the ideas presented in the scale-similarity model of
Bardina et al. [31]. (Note that Deardorff [14] solved a transport equation for ksgs.)

4.2.4 Vreman’s Model

Vreman’s eddy viscosity model [32] is given by

µt = ρ c

√
Bβ

αi jαi j
(4.19)

where

Bβ = β11β22−β
2
12 +β11β33−β

2
13 +β22β33−β

2
23 ; βi j = ∆

2
mαmiαm j (4.20)
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αi j =
∂u j

∂xi
(4.21)

The basic idea behind Vreman’s model is to expand the velocity field in a Taylor series and to test filter
this field analytically, thus avoiding the expensive explicit test filtering operations necessary in the dynamic
model. Therefore, this model is inexpensive. Unlike constant coefficient Smagorinsky, however, Vreman’s
model is convergent, making it applicable to highly resolved LES calculations.

The model constant may be related to the Smagorinsky constant, c ≈ 2.5C2
s . Since Vreman’s model

is most applicable to high resolution cases, we base the coefficient off of Cs = 0.17, which yields accurate
results for highly resolved decaying isotropic turbulence (see the FDS Verification Guide [33]). The default
Vreman constant is therefore set to c = 0.07.

4.2.5 Renormalization Group (RNG) Model

Renormalization group (RNG) theory [34] may be used to derive an effective eddy viscosity, µeff = µ +µt ,
given by the cubic expression:

µeff = µ

[
1+H

(
µ2

s µeff

µ3 −C
)]1/3

(4.22)

Here, µs is the Smagorinsky eddy viscosity (with Cs = 0.2) and H(x) is the Heaviside function (H(x) = x if
x > 0, H(x) = 0 if x≤ 0).

For regions of high turbulence intensity (µt � µ), RNG recovers the constant coefficient Smagorinsky
model. Unlike constant coefficient Smagorinsky, however, the RNG turns itself off in regions of low tur-
bulence. The cutoff constant, C = 10, has been tuned to match the high wavenumber modes in the CBC
experiment for the 643 case (see FDS Verification Guide [33]).

4.2.6 Thermal Conduction and Gas Species Diffusion

The other diffusive parameters, the thermal conductivity and mass diffusivity, are related to the turbulent
viscosity by

kt =
µt cp

Prt
; (ρD)t =

µt

Sct
(4.23)

The turbulent Prandtl number Prt and the turbulent Schmidt number Sct are assumed to be constant for a
given scenario. The default value is 0.5 for both.

4.2.7 Numerical Implementation

In the discretized form of the momentum equation, the modeled viscosity is defined at cell centers. For
example, the constant coefficient Smagorinsky model takes on the following form:

µi jk = ρi jk (Cs ∆)2 |S| (4.24)

where Cs is an empirical constant, ∆ = (δxδyδ z)
1
3 , and

|S|2 = 2
(

∂u
∂x

)2

+2
(

∂v
∂y

)2

+2
(

∂w
∂ z

)2

+

(
∂u
∂y

+
∂v
∂x

)2

+

(
∂u
∂ z

+
∂w
∂x

)2

+

(
∂v
∂ z

+
∂w
∂y

)2

− 2
3
(∇·u)2

(4.25)
The quantity |S| consists of second order spatial differences averaged at cell centers. For example

∂u
∂x
≈

ui jk−ui−1, jk

δxi
(4.26)
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∂u
∂y
≈ 1

2

(
ui, j+1,k−ui jk

δy j+ 1
2

+
ui jk−ui, j−1,k

δy j− 1
2

)
(4.27)

The divergence is described in Section 3.3.2.
The thermal conductivity and material diffusivity of the fluid are related to the viscosity by

ki jk =
cp,0 µi jk

Prt
; (ρD)i jk =

µi jk

Sct
(4.28)

where Prt is the turbulent Prandtl number and Sct is the turbulent Schmidt number, both assumed constant.
Note that the specific heat cp,0 is that of the dominant species of the mixture. Based on simulations of
smoke plumes, Cs is 0.20, Prt and Sct are 0.5. There are no rigorous justifications for these choices other
than through comparison with experimental data [35].

4.2.8 Transport Coefficients for Direct Numerical Simulation (DNS)

There are some flow scenarios where it is possible to use the molecular properties µ , k and D directly.
Usually, this means that the numerical grid cells are on the order of 1 mm or less, and the simulation
is regarded as a Direct Numerical Simulation (DNS). For a DNS, the viscosity, thermal conductivity and
material diffusivity are approximated from kinetic theory because the temperature dependence of each is
important in combustion scenarios. The viscosity of the species α is given by

µα =
26.69×10−7(Wα T )

1
2

σ2
α Ωv

[=] kg/(m · s) (4.29)

where σα is the Lennard-Jones hard-sphere diameter (Å) and Ωv is the collision integral, an empirical
function of the temperature T . The thermal conductivity of species α is given by

kα =
µα cp,α

Pr
[=] W/(m ·K) (4.30)

Note that the default value of the Prandtl number Pr is 0.7. However, this is an input property that can be set
by the user. The viscosity and thermal conductivity of a gas mixture are given by

µDNS = ∑
α

Yα µα ; kDNS = ∑
α

Yα kα (4.31)

The binary diffusion coefficient of species α diffusing into species β is given by

Dαβ =
2.66×10−7 T 3/2

W
1
2

αβ
σ2

αβ
ΩD

[=] m2/s (4.32)

where Wαβ = 2(1/Wα +1/Wβ )
−1, σαβ = (σα +σβ )/2, and ΩD is the diffusion collision integral, an empiri-

cal function of the temperature, T [36]. It is assumed that nitrogen is the dominant species in any combustion
scenario considered here, thus the diffusion coefficient in the species mass conservation equations is that of
the given species diffusing into nitrogen

(ρD)α,DNS = ρ Dα,0 (4.33)

where species 0 is nitrogen.
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4.3 Coupling the Velocity and Pressure

4.3.1 Simplifications of the Momentum Equation

First, we start with the non-conservative form of the momentum equation introduced above (see Eq. 4.13)

ρ

(
∂u
∂ t

+(u ·∇)u
)
+∇p = ρg+ fb +∇· τi j (4.34)

Next, we make the following substitutions:

1. Subtract the hydrostatic pressure gradient of the nth pressure zone, ρn(z, t)g, from both sides. Note that
∇p = ρng+∇p̃.

2. Apply the vector identity: (u ·∇)u = ∇|u|2/2−u×ω

3. Divide all terms by the density, ρ

4. Decompose the pressure term:
1
ρ

∇p̃ = ∇

(
p̃
ρ

)
− p̃∇

(
1
ρ

)
(4.35)

5. Define H ≡ |u|2/2+ p̃/ρ

Now the momentum equation can be written

∂u
∂ t
−u×ω− 1

ρ

[
(ρ−ρn)g+ fb +∇· τi j

]
︸ ︷︷ ︸

FA

−p̃∇

(
1
ρ

)
︸ ︷︷ ︸

FB

+∇H = 0 (4.36)

Note that the subscripts A and B for the vector F denote Advective and Baroclinic. As will be seen in the
following sections, it is convenient to group the various terms of the momentum equation into these two
terms.

4.3.2 Finite-Difference Approximation of the Momentum Equation

As discussed in the previous section, it is convenient to write the momentum equation in the form:

∂u
∂ t

+F+∇H = 0 ; F = FA +FB (4.37)

The advective and baroclinic terms, FA and FB, are expanded as:

FA,x = wωy− vωz−
1
ρ

(
(ρ−ρn)gx + fx +

∂τxx

∂x
+

∂τxy

∂y
+

∂τxz

∂ z

)
; FB,x =−p̃

∂

∂x

(
1
ρ

)
(4.38)

FA,y = uωz−wωx−
1
ρ

(
(ρ−ρn)gy + fy +

∂τyx

∂x
+

∂τyy

∂y
+

∂τyz

∂ z

)
; FB,y =−p̃

∂

∂y

(
1
ρ

)
(4.39)

FA,z = vωx−uωy−
1
ρ

(
(ρ−ρn)gz + fz +

∂τzx

∂x
+

∂τzy

∂y
+

∂τzz

∂ z

)
; FB,z =−p̃

∂

∂ z

(
1
ρ

)
(4.40)
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The term ∇H is referred to as the pressure gradient, even though, as discussed above, H is not actually a
pressure. Its discretization is:

∂u
∂ t

+Fx,i jk +
Hi+1, jk−Hi jk

δx
= 0 (4.41)

∂v
∂ t

+Fy,i jk +
Hi, j+1,k−Hi jk

δy
= 0 (4.42)

∂w
∂ t

+Fz,i jk +
Hi j,k+1−Hi jk

δ z
= 0 (4.43)

where Hi jk is taken at the center of cell i jk, ui jk and Fx,i jk are taken at the side of the cell facing in the forward
x direction, vi jk and Fy,i jk at the side facing in the forward y direction, and wi jk and Fz,i jk at the side facing in
the forward z (vertical) direction.

For the discretization of FA, the components of the vorticity (ωx,ωy,ωz) are located at cell edges point-
ing in the x, y and z directions, respectively. The same is true for the off-diagonal terms of the viscous stress
tensor: τzy = τyz, τxz = τzx, and τxy = τyx. The diagonal components of the stress tensor, τxx, τyy, and τzz, and
the external force components, fx, fy, and fz, are located at their respective cell faces.

FA,x,i jk =
1
2

(
wi+ 1

2 , jk
ωy,i jk +wi+ 1

2 , j,k−1 ωy,i j,k−1

)
− 1

2

(
vi+ 1

2 , jk
ωz,i jk + vi+ 1

2 , j−1,k ωz,i, j−1,k

)
− 1

ρi+ 1
2 , jk

(
fx,i jk +

τxx,i+1, jk− τxx,i jk

δx
+

τxy,i jk− τxy,i, j−1,k

δy
+

τxz,i jk− τxz,i, j,k−1

δ z

)
(4.44)

FA,y,i jk =
1
2

(
ui, j+ 1

2 ,k
ωz,i jk +ui−1, j+ 1

2 ,k
ωz,i−1, jk

)
− 1

2

(
wi, j+ 1

2 ,k
ωx,i jk +wi, j+ 1

2 ,k−1 ωx,i j,k−1

)
− 1

ρi, j+ 1
2 ,k

(
fy,i jk +

τyx,i jk− τyx,i−1, jk

δx
+

τyy,i, j+1,k− τyy,i jk

δy
+

τyz,i jk− τyz,i, j,k−1

δ z

)
(4.45)

FA,z,i jk =
1
2

(
vi j,k+ 1

2
ωx,i jk + vi, j−1,k+ 1

2
ωx,i, j−1,k

)
− 1

2

(
ui j,k+ 1

2
ωy,i jk +ui−1, j,k+ 1

2
ωy,i−1, jk

)
− 1

ρi j,k+ 1
2

(
fz,i jk +

τzx,i jk− τzx,i−1, jk

δx
+

τzy,i jk− τzy,i, j−1,k

δy
+

τzz,i j,k+1− τzz,i jk

δ z

)
(4.46)

The components of the vorticity vector are discretized:

ωx,i jk =
wi, j+1,k−wi jk

δy
−

vi j,k+1− vi jk

δ z
(4.47)

ωy,i jk =
ui j,k+1−ui jk

δ z
−

wi+1, jk−wi jk

δx
(4.48)

ωz,i jk =
vi+1, jk− vi jk

δx
−

ui, j+1,k−ui jk

δy
(4.49)

The components of the viscous stress tensor are discretized:

τxx,i jk = µi jk

(
4
3
(∇·u)i jk−2

vi jk− vi, j−1,k

δy
−2

wi jk−wi j,k−1

δ z

)
(4.50)
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τyy,i jk = µi jk

(
4
3
(∇·u)i jk−2

ui jk−ui−1, jk

δx
−2

wi jk−wi j,k−1

δ z

)
(4.51)

τzz,i jk = µi jk

(
4
3
(∇·u)i jk−2

ui jk−ui−1, jk

δx
−2

vi jk− vi, j−1,k

δy

)
(4.52)

τxy,i jk = τyx,i jk = µi+ 1
2 , j+

1
2 ,k

(
ui, j+1,k−ui jk

δy
+

vi+1, jk− vi jk

δx

)
(4.53)

τxz,i jk = τzx,i jk = µi+ 1
2 , j,k+

1
2

(
ui j,k+1−ui jk

δ z
+

wi+1, jk−wi jk

δx

)
(4.54)

τyz,i jk = τzy,i jk = µi, j+ 1
2 ,k+

1
2

(
vi j,k+1− vi jk

δ z
+

wi, j+1,k−wi jk

δy

)
(4.55)

The components of the baroclinic term, FB, are discretized:

FB,x,i jk =−
p̃i+1, jk ρi jk + p̃i jk ρi+1, jk

ρi jk +ρi+1, jk

1
δx

(
1

ρi+1, jk
− 1

ρi jk

)
(4.56)

FB,y,i jk =−
p̃i, j+1,k ρi jk + p̃i jk ρi, j+1,k

ρi jk +ρi, j+1,k

1
δy

(
1

ρi, j+1,k
− 1

ρi jk

)
(4.57)

FB,z,i jk =−
p̃i j,k+1 ρi jk + p̃i jk ρi j,k+1

ρi jk +ρi j,k+1

1
δ z

(
1

ρi j,k+1
− 1

ρi jk

)
(4.58)

Notice the somewhat unusual discretization of the term p̃∇(1/ρ), which is needed to be consistent with the
discretization of the other two terms in Eq. (4.35):

1
(ρi jk +ρi, jk)/2

p̃i+1, jk− p̃i jk

δx
=

1
δx

(
p̃i+1, jk

ρi+1, jk
−

p̃i jk

ρi jk

)

−
p̃i+1, jk ρi jk + p̃i jk ρi+1, jk

ρi jk +ρi+1, jk

1
δx

(
1

ρi+1, jk
− 1

ρi jk

)
(4.59)

4.3.3 The Poisson Equation for Pressure

Before the components of velocity can be advanced in time, an elliptic partial differential equation (known
as a Poisson equation) must be solved for the pressure term, H. This equation is formed by taking the
divergence of the momentum equation:

∇
2H =−∂ (∇·u)

∂ t
−∇· (FA +FB) (4.60)

Note that the perturbation pressure p̃ appears on both sides of Eq. (4.60). The value of p̃ in FB is taken
from the last computed H. The pressure on the left hand side (incorporated in the variable H) is solved
for directly. The reason for the decomposition of the pressure term is so that the linear algebraic system
arising from the discretization of Eq. (4.60) has constant coefficients (i.e., it is separable) and can be solved
to machine accuracy by a fast, direct (i.e., non-iterative) method that utilizes Fast Fourier Transforms (FFT).
As will be discussed below, the Poisson equation is solved multiple times, each time driving the old and new
values of p̃ closer together.

32



The discretized form of the Poisson equation is

Hi+1, jk−2Hi jk +Hi−1, jk

δx2 +
Hi, j+1,k−2Hi jk +Hi, j−1,k

δy2 +
Hi j,k+1−2Hi jk +Hi j,k−1

δ z2

=−
Fx,i jk−Fx,i−1, jk

δx
−

Fy,i jk−Fy,i, j−1,k

δy
−

Fz,i jk−Fz,i j,k−1

δ z
− δ

δ t
(∇·u)i jk (4.61)

This elliptic partial differential equation is solved using a direct FFT-based solver [16] that is part of a library
of routines for solving elliptic PDEs called CRAYFISHPAK1. To ensure that the divergence of the fluid is
consistent with the definition given in Eq. (3.20), the time derivative of the divergence is defined

δ

δ t
(∇·u)i jk ≡

(∇·u)∗i jk− (∇·u)n
i jk

δ t
(4.62)

at the predictor step, and then

δ

δ t
(∇·u)i jk ≡

(∇·u)n+1
i jk −

1
2

[
(∇·u)∗i jk +(∇·u)n

i jk

]
δ t/2

(4.63)

at the corrector step. By construction, the thermodynamic divergence defined in Eq. (3.20) is identically
equal to the divergence defined by

(∇·u)i jk =
ui jk−ui−1, jk

δx
+

vi jk− vi, j−1,k

δy
+

wi jk−wi j,k−1

δ z
(4.64)

The equivalence of the two definitions of the divergence is a result of the form of the discretized equations,
the time-stepping scheme, and the direct solution of the Poisson equation for the pressure.

The following sections describe how the boundary conditions for the pressure equation are specified.

Open Boundary Conditions

An open boundary is where fluid is allowed to flow into or out of the computational domain depending on
the local pressure gradient. The boundary condition for the pressure depends on whether the local flow is
incoming or outgoing. In either case, it is assumed that the quantity, H = p̃/ρ + |u|2/2, remains constant
along a streamline. It is also assumed that the pressure perturbation at the boundary is a user-specified input,
p̃ext, that is zero by default. The Poisson solver for H requires a Dirichlet condition at an open boundary;
that is, its value is specified at the external boundary of the mesh. As an example, consider the boundary,
x = xmin. The boundary value of H is given by the following expressions depending on the direction of the
flow across the external cell face:

BXS(J,K)≡ H 1
2 , jk

=


p̃ext

ρ1, jk
+

1
2
(
ū2

1. jk + v̄2
1, jk + w̄2

1, jk
)

outgoing

p̃ext

ρ∞

+
1
2
(
u2

∞ + v2
∞ +w2

∞

)
incoming

(4.65)

BXS is the name of the array sent to the pressure solver. The bar over the velocity components indicates an
average over the respective faces of the grid cell adjacent to the boundary. The subscript ∞ denotes user-
specified far field velocity and density values. Typically, the far field velocity is zero, but for simulations
involving an external wind, these values can be specified accordingly.

1CRAYFISHPAK, a vectorized form of the elliptic equation solver FISHPAK, was originally developed at the National Center
for Atmospheric Research (NCAR) in Boulder, Colorado.
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Solid Boundary Conditions

Boundary conditions at a solid surface fall into three distinct categories:

1. External boundary where the entire face of the mesh is either solid or a forced flow.

2. External boundary where there is a mix of open and solid surfaces.

3. Internal solid obstructions.

Case 1: FDS uses a direct Poisson solver that requires that one specify either Neumann (specified normal
gradient) or Dirichlet (specified value) boundary conditions at the exterior of the mesh. If an entire face
of the mesh is a solid or forced flow boundary, we can use the Neumann boundary condition for the
entire face. For example, at the x = xmax boundary we can specify the normal gradient of H:

BXF(J,K)≡
Hn

I+1, jk−Hn
I, jk

δx
=−Fn

x,I, jk−
u∗I, jk−un

I, jk

δ t
(4.66)

where BXF is the name of the boundary condition array sent to the pressure solver, HI+1, jk lives in the
center of the ghost cell to the right of the boundary, HI, jk lives in the center of cell to the left of the
boundary, Fn

x,I, jk is the x-component of F at the vent or solid wall at the start of the time step, and u∗I, jk is
the user-specified value of the x-component of velocity at the next time step. For the corrector step:

BXF(J,K)≡
H∗I+1, jk−H∗I, jk

δx
=−F∗x,I, jk−

un+1
I, jk −

1
2(u
∗
I, jk +un

I, jk)

δ t/2
(4.67)

The normal velocity component at the next time step, un+1
I, jk , is exactly (to machine accuracy) the specified

value. If the boundary is a solid wall, then this value starts and remains zero. If the boundary is a forced
flow vent, then this value follows the user-specified time history.

Case 2: At exterior mesh faces with a mix of solid and open boundaries, we must apply Dirichlet boundary
conditions at all cells, meaning that H is specified rather than its gradient. Consider the same mesh face
as in Case 1. We first modify the flux term using a previously computed value of the pressure and the
desired time derivative of the velocity component:

Fn,k
x,I, jk =−

Hn,k−1
I+1, jk−Hn,k−1

I, jk

δx
−

u∗I, jk−un
I, jk

δ t
(4.68)

Next, the value of H is specified at the mesh boundary:

BXF(J,K)≡ Hn,k
I+ 1

2 , jk
=

Hn,k−1
I, jk +Hn,k−1

I+1, jk

2
+

δx
4δ t

(
u∗,k−1

I, jk −u∗I, jk
)

(4.69)

The superscript k is an iterative index. We use the interface value of H from the previous iteration to
estimate its value at the current. The term, u∗,k−1

I, jk , is a first-order estimate of the desired normal velocity
component at the next time step, u∗I . The purpose of the second term on the right hand side of Eq. (4.69)
is demonstrated by summing Eq. (4.68) and Eq. (4.69) which leads to:

u∗I, jk = un
I, jk +

u∗,k−1
I, jk −u∗I, jk

2
−δ t

Fn,k
x,I, jk +

Hn,k
I+ 1

2 , jk
−Hn,k−1

I, jk

δx/2

 (4.70)
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Very loosely, this converges according to

∣∣∣u∗,kI, jk−u∗I, jk
∣∣∣≈ ∣∣∣∣∣u

∗,k−1
I, jk −u∗I, jk

2

∣∣∣∣∣ (4.71)

This iterative process continues until
∣∣∣u∗,kI, jk−u∗I, jk

∣∣∣ falls below a specified tolerance. By default, the
tolerance is δx/2. For the corrector step, this procedure is the same, except the boundary condition for
the pressure term is:

BXF(J,K)≡ H∗,k
I+ 1

2 , jk
=

H∗,k−1
I, jk +H∗,k−1

I+1, jk

2
+

δx
2δ t

(
un+1,k−1

I, jk −un+1
I, jk

)
(4.72)

Case 3: FDS uses a simple, direct-forcing immersed boundary method (IBM) [37] for block Cartesian
geometries. Internal solid obstructions are represented as masked grid cells, but the no-flux condition
(4.66) cannot be directly prescribed at the boundaries of these blocked cells. However, by solving the
pressure equation several times within a time step, the normal component of velocity can be driven to
within some specified tolerance of the desired value. At the start of a time step, the components of F
are computed at all cell faces that do not correspond to walls. At those cell faces that do correspond to
solid walls but are not located at the exterior of the computational grid, we prescribe (for example at the
cell face where ui jk “lives“):

Fn,k
x,i jk =−

Hn,k−1
i+1, jk−Hn,k−1

i jk

δx
−

u∗i jk−un
i jk

δ t
(4.73)

at the predictor step, and

F∗,kx,i jk =−
H∗,k−1

i+1, jk−H∗,k−1
i jk

δx
−

un+1
i jk −

1
2

(
u∗i jk +un

i jk

)
δ t/2

(4.74)

at the corrector step. Note that the superscript n refers to the time step and k refers to the iteration
of the pressure solver. Note that u∗i jk and un+1

i jk are approximate because the true value of the velocity
time derivative depends on the solution of the pressure equation, but since the most recent estimate of
pressure is used, the approximation is fairly good. Also, even though there are small errors in normal
velocity at solid surfaces, the divergence of each blocked cell remains exactly zero for the duration of
the calculation. In other words, the total flux into a given obstruction is always identically zero, and the
error in normal velocity is usually at least several orders of magnitude smaller than the characteristic
flow velocity. When implemented as part of a predictor-corrector updating scheme, the no-flux condition
at solid surfaces is maintained fairly well.

Boundary Conditions at Mesh Interfaces

Dirichlet boundary conditions are applied at the interface between two meshes, which means that H is
specified at the interface. Consider the interface between two non-overlapping meshes. The value of H in
the center of the rightmost cell of the left mesh is denoted HI , and the value of H in the center of the leftmost
cell of the right mesh is H1. The interface value of the left mesh is denoted HI+ 1

2
≡ (HI +HI+1)/2, and the

interface value of the right mesh is denoted H 1
2
≡ (H0+H1)/2. The specified value of H for both meshes is:

Hk
1
2
= Hk

I+ 1
2
≡

Hk−1
I +Hk−1

1
2

+
δx
4δ t

(
u∗,k−1

I −u∗,k−1
0

)
(4.75)
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The superscript k is an iterative index. The terms, u∗,k−1
I and u∗,k−1

0 , are first-order estimates of the normal
velocity components at the next time step, based on the previous (k−1) estimate of the pressure field. For
example, the normal velocity at the left mesh interface is calculated:

u∗,k−1
I = ūn

I −δ t

Fn
x,I +

Hk−1
I+ 1

2
−Hk−1

I

δx/2

 ; Hk−1
I+ 1

2
=

Hk−1
I +Hk−1

1
2

(4.76)

The purpose of the second term on the right hand side of Eq. (4.75) is demonstrated by substituting Hk
I+ 1

2
from Eq. (4.75) into Eq. (4.76) which leads to:

u∗,k−1
I = ūn

I −
u∗,k−2

I −u∗,k−2
0

2
−δ t

(
Fn

x,I +
(Hk−2

I +Hk−2
1 )/2−Hk−1

I

δx/2

)
(4.77)

The extra term on the right hand side drives uI halfway towards u0, which is itself driven halfway towards uI .
This iterative process continues until

∣∣∣u∗,kI −u∗,k0

∣∣∣ falls below a specified tolerance. By default, the tolerance
is δx/2.

For the corrector step, this procedure is the same, except the boundary condition for the pressure term
is:

Hk
1
2
= Hk

I+ 1
2
≡

Hk−1
I +Hk−1

1
2

+
δx
2δ t

(
un+1,k−1

I −un+1,k−1
0

)
(4.78)

4.3.4 Iterative Procedure for Updating Velocity

The Poisson solver in FDS produces an exact solution of Eq. (4.61) on each mesh. There are three problems
with this solution, however:

1. The solution, H, is continuous at mesh interfaces, but the finite-difference of its gradient is not. This
means that the normal component of velocity at the mesh interface will not agree at the next time step.

2. At solid internal boundaries, the normal component of velocity is not exactly zero because the normal
component of F is set equal to the previous value of the gradient of H. The no-flux boundary condition
is only exact at external boundaries.

3. The perturbation pressure, p̃, that is included in F is from the previous time step. Thus, after solving the
Poisson equation, the value of p̃ implicit in H will not equal the value in F.

One solution to these three problems is to solve the Poisson equation multiple times, each time updating
the lagged value of pressure until the normal component of velocity at internal solids and mesh boundaries
converges within a specified tolerance, and until the old and new values of the perturbation pressure, p̃,
converge to within a specified tolerance.

Following is a step by step procedure for advancing the velocity components. This same procedure is
followed, with a few noted exceptions, in both the predictor and corrector stages of the time step.

1. The overlapping normal components of velocity that co-exist at the mesh interface are replaced by their
average. Consider two meshes joined side by side in the x direction. The component uI ≡ uI, jk lives on
the right boundary of the left hand mesh, and u0≡ u0, jk lives on the left boundary of the right hand mesh.
Define the discrete “patch-averaged” field ū which is identical at all overlapping mesh points. To do this
we simply average the coincident values of the normal velocity component at the mesh interfaces. For
instance, considering the same side-by-side meshes as before,

ūI = ū0 ≡
1
2
(
uI, jk +u0, jk

)
(4.79)
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for all patch boundary cells j and k. Here, for simplicity, we are only considering the case in which the
cell sizes are equivalent for the adjoining meshes (coarse-fine mesh interfaces are possible).

2. Compute FA(ū) as described in Section 4.3.2.

3. Add the baroclinic term F(ū) = FA(ū)+FB(ū) as described in Section 4.3.2.

4. Compute the normal component of F at solid surfaces from Eq. (4.73) or Eq. (4.74).

5. Solve the Poisson equation for the pressure H as described in Section 4.3.3. At the predictor stage:

∇
2Hn =−

(
∇·u∗−∇·un−∇· (ūn−un)

δ t

)
−F(ūn) (4.80)

At the corrector stage:

∇
2H∗ =−

(
2∇ ·un+1−∇·u∗−∇· (ū∗−u∗)−∇·un−∇· (ūn−un)

δ t

)
−F(ū∗) (4.81)

The extra terms in the time derivative, ∇· (ūn− un) and ∇· (ū∗− u∗), “correct” the divergence error.
The benefit to averaging the normal components of velocity at mesh interfaces is that F is the same
on each side of the interface, since all force terms are determined using the patch-averaged field. This
also means that stress tensors computed at a mesh interface (which are buried in F) are symmetric; this
symmetry is a requirement for angular momentum conservation. Thus, the patch-averaging procedure
prevents the production of spurious vorticity at mesh interfaces.

6. Estimate the velocity field at the next time step. For the predictor step:

u∗,k = ūn−δ t
(

F(ūn)+∇Hk−1
)

(4.82)

At the corrector step:

un+1,k =
1
2

(
ūn + ū∗−δ t

(
F(ū∗)+∇Hk−1

))
(4.83)

Note that for both stages, the normal components of velocity at the interface are no longer expected to
match because the individual pressure fields do not match exactly at the interface.

7. Check the convergence criteria. The default velocity tolerance is

|u∗I −u∗0|< 0.5δx (4.84)

and the default convergence criteria for the pressure, p = ρ(H−|u|2/2), is∣∣∇ · (pk− pk−1)∇(1/ρ)
∣∣< 20/δx2 (4.85)

If the criteria are not met, return to Step 3.
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4.4 Velocity Boundary Conditions

4.4.1 Smooth Walls

In finite-volume LES, when the momentum equation is integrated over a cell adjacent to the wall it turns
out that the most difficult term to handle is the viscous stress, τw, because the wall-normal gradient of the
streamwise velocity component cannot be resolved; the SGS stress at the wall is identically zero. We have,
therefore, an entirely different situation than exists in the bulk flow at high Reynolds number where the
viscous terms are negligible and the SGS stress is of critical importance. The fidelity of the SGS model
still influences the wall stress, however, since other components of the SGS tensor affect the value of the
near-wall velocity and hence the resulting viscous stress determined by the wall model. FDS models τw with
a logarithmic velocity profile [15] described below.

An important scaling quantity in the near-wall region is the friction velocity, defined as uτ ≡
√

τw/ρ .
From the friction velocity we can define the nondimensional streamwise velocity u+ ≡ u/uτ and nondimen-
sional wall-normal distance y+ ≡ y/δν , where δν = ν/uτ = µ/(ρuτ) is the viscous length scale. In FDS,
the law of the wall is approximated by

u+ = y+ for y+ < 11.81 (4.86)

u+ =
1
κ

lny++B for y+ ≥ 11.81 (4.87)

where κ = 0.41 is the von Kármán constant and B = 5.2. The region 5 < y+ < 30, where both viscous
and inertial stresses are important, is referred to as the buffer layer. Following the work of Werner and
Wengle [38], the solution in this region is approximated by matching the viscous region and log regions at
y+ = 11.81.

For the purposes of adapting the log law model to FDS we suppose that the first off-wall velocity
component represents the profile sampled at a distance δy/2 in the wall-normal direction—streamwise
components of velocity are stored at the face center on a staggered grid. The density and molecular viscosity
are taken as the average of the neighboring cell values and uniform on the cell face where the streamwise
velocity component is stored.

4.4.2 Rough Walls

For rough walls FDS employs the log law presented in Pope [15],

u+ =
1
κ

ln
(y

s

)
+ B̃(s+) (4.88)

where s+ = s/δν is the roughness length in viscous units and s is the dimensional roughness. The distance
to the wall, y, is taken as δy/2 for the first off-wall grid cell. The parameter B̃ varies with s+ but attains
a constant value B2 = 8.5 in the fully rough limit. In FDS, we implement B̃ as the following piece-wise
function:

B̃ =


B+(1/κ) ln(s+) for s+ < 5.83
B̃max for 5.83≤ s+ < 30.0
B2 for s+ ≥ 30.0

(4.89)

where B̃max = 9.5.

4.4.3 Wall Model Implementation

Once u+ has been determined from the model profile, the stress may be obtained from (the definition of u+)

τw = ρ

( u
u+

)2
(4.90)
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Generally, this requires an iterative procedure since τw is needed to define δν and hence y+. The strategy
employed in FDS is to first compute τw as if the flow is locally laminar (DNS), and if the calculation is
an LES the laminar value is used as an initial guess. Testing has shown that three iterations is sufficient to
converge the residual error in the profile model to 1%.

4.4.4 Wall Damping of the Turbulent Viscosity

The turbulent viscosity νt = µt/ρ may be thought of as a “mixing length” squared divided by a time scale.
For example, in the Smagorinsky model the mixing length is `mix =Cs ∆ and the time scale is the inverse of
the strain rate invariant 1/|S|. Thus, the turbulent kinematic viscosity has units of length2/time.

To achieve the correct decay of the Reynolds stresses near a wall, Van Driest [39] proposed the following
modification:

`mix =Cs∆

[
1− e−y+/A

]
(4.91)

where A is a dimensionless empirical constant equal to 26. The term in brackets is referred to as the Van
Driest damping function. In FDS, due to difficulties defining a consistent test filter for use with either the
Deardorff or the dynamic Smagorinsky turbulence model near the wall, at corners, and inside cavities, the
turbulent viscosity of the first off-wall cell is obtained from the Smagorinsky model with Van Driest damping
applied to the mixing length as shown in Eq. (4.91) with y+ = (δy/2)/δν and Cs = 0.2. See Section 4.4.1
for an explanation of terms. The viscosity near the wall is then given by

νt = `2
mix |S| (4.92)

where the strain rate, |S|, is defined in Eq. (4.16).
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4.5 Time Step and Stability Constraints

In explicit schemes, stability criteria may often be understood in terms of using the time step to maintain
physically realizable conditions. Below we examine the necessary conditions for stability in the presence of
advection, diffusion, and expansion of the velocity and scalar fields.

4.5.1 The Courant-Friedrichs-Lewy (CFL) Constraint

The well-known CFL constraint given by

CFL = δ t
‖u‖
δx
≈ 1 (4.93)

places a restriction on the time step due to the advection velocity. Physically, the constraint says that a fluid
element should not traverse more than one cell within a time step. For LES, this constraint has the added
advantage of keeping the implicit temporal and spatial filters consistent with each other. In other words, in
order to resolve an eddy of size δx, the time step needs to be in concert with the CFL. If one were to employ
an implicit scheme for the purpose of taking time steps say 10 times larger than the CFL limit, the smallest
resolvable turbulent motions would then be roughly 10 times the grid spacing, which would severely limit
the benefit of LES. In most cases, if one wishes the simulation to run faster, a better strategy is to coarsen
the grid resolution while keeping the CFL ≈ 1.

The exact CFL needed to maintain stability depends on the order (as well as other properties) of the
time integration scheme and the choice of velocity norm. Three choices for velocity norm are available in
FDS (set on MISC):

CFL_VELOCITY_NORM=0 (default, least restrictive, corresponds to L∞ norm of velocity vector)

‖u‖
δx

= max
(
|u|
δx

,
|v|
δy

,
|w|
δ z

)
(4.94)

CFL_VELOCITY_NORM=1 (most restrictive, corresponds to L1 norm of velocity vector)

‖u‖
δx

=
|u|
δx

+
|v|
δy

+
|w|
δ z

(4.95)

CFL_VELOCITY_NORM=2 (L2 norm of velocity vector)

‖u‖
δx

=
√
(u/δx)2 +(v/δy)2 +(w/δ z)2 (4.96)

4.5.2 The Von Neumann Constraint

The Von Neumann constraint is given by

VN = δ t max
[
(µ/ρ),Dα

]
∑

i

1
δx2

i
<

1
2

(4.97)

We can understand this constraint in a couple of different ways. First, we could consider the model for the
diffusion velocity of species α in direction i, Vα,iYα = −Dα∂Yα/∂xi, and we would then see that VN is
simply a CFL constraint due to diffusive transport.

We can also think of VN in terms of a total variation diminishing (TVD) constraint. That is, if we
have variation (curvature) in the scalar field, we do not want to create spurious wiggles that can lead to an
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instability by overshooting the smoothing step. Consider the following explicit update of the heat equation
for u in 1D. Here subscripts indicate grid indices and ν is the diffusivity.

un+1
i = un

i +
δ t ν

δx2

(
un

i−1−2un
i +un

i+1
)

(4.98)

Very simply, notice that if δ tν/δx2 = 1/2 then un+1
i = (un

i−1 + un
i+1)/2. If the time step is any larger we

overshoot the straight line connecting neighboring cell values. Of course, this restriction is only guaranteed
to be TVD if the u field is “smooth”, else the neighboring cell values may be shifting in the opposite
direction. Unfortunately, in LES there is no such guarantee and so the VN constraint can be particularly
devilish in generating instabilities. For this reason, some practitioners like to employ implicit methods for
the diffusive terms. Note that by default, VN is not checked in LES mode.

4.5.3 Realizable Mass Density Constraint

In an explicit Euler update of the continuity equation, if the time increment is too large the computational
cell may be totally drained of mass, which of course is not physical. The constraint ρn+1 > 0 therefore leads
to the following restriction on the time step:

δ t <
ρn

un ·∇ρn +ρn∇ ·un (4.99)

We can argue that the case we are most concerned with is when ρn is near zero. A reasonable approximation
to (4.99) then becomes (time location suppressed, summation over i is implied)

δ t <
ρ

ui

(
ρ−0
δxi

)
+ρ∇ ·u

=

[
ui

δxi
+∇ ·u

]−1

(4.100)

Equation (4.100) basically adds the effect of thermal expansion to the CFL constraint and provides a reason
to prefer CFL_VELOCITY_NORM=1 as the basis for the time step restriction.

4.5.4 Realizable Fluid Volume Constraint

Mass conservation tells us that the time rate of change of a fluid element with mass ρV does not change:

d(ρV )

dt
= 0. (4.101)

Using continuity, Eq. (4.101) rearranges to

∇ ·u =
1
V

dV
dt

, (4.102)

where V (t) is the time-dependent volume of the fluid element. If ∇ · u < 0, the fluid element is under
compression. In fire dynamics this usually occurs due to cooling (heat loss by radiation, for example).
Equation (4.102) highlights the physical interpretation of the velocity divergence as the rate of volumetric
expansion of the fluid per unit volume.

Equation (4.102) also implies a time step constraint. Consider an explicit update of Eq. (4.102) for the
fluid volume:

V n+1 =V n +∆t V n(∇ ·u)n . (4.103)
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If the fluid element is in compression (the divergence is negative), positivity of the fluid volume requires the
time step to be limited by

∆t <−(∇ ·u)−1 . (4.104)

Note that this is the analog of the positive mass density constraint when the divergence is positive and
provides the rationale for using the absolute value of the divergence |∇ ·u| in the final version of the CFL
constraint shown below.

4.5.5 Heat Transfer Constraint

Note that the heat transfer coefficient, h, has units of W/(m2 K). Thus, a velocity scale may be formed from
h/(ρ cp). Anytime we have a velocity scale to resolve, we have a CFL-type stability restriction. Therefore,
the heat transfer stability check loops over all wall cells to ensure δ t ≤ δxρ cp/h. This check is an option.
It is not done by default.

4.5.6 Adjusting the Time Step

In the default LES mode of operation, the CFL is increased or decreased to remain between 0.8 and 1. To
be clear, the CFL constraint is now given by

CFL = δ t
(
‖u‖
δx

+ |∇ ·u|
)

(4.105)

In DNS mode, the time step is also adjusted to maintain VN between 0.4 and 0.5. If either the CFL or VN
is too large then the new time step is set to 90% of the allowable value. If both CFL and VN are below their
minimum values then the current time step is increased by 10%. See the User’s Guide [3] for details.
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Chapter 5

Combustion (Chemically Reacting Flows)

The combustion model determines the mean chemical mass production rate of species α per unit volume,
ṁ′′′α , in the species transport equation, Eq. (2.5). In general, ṁ′′′α requires a closure model because the
flame thickness is on the order of one millimeter while the grid spacing is typically on the order of tens of
centimeters. This chapter describes a turbulent batch reactor model for ṁ′′′α capable of handling a range of
mixing conditions and chemical kinetics. In the non-premixed, fast chemistry limit, which is valid for the
vast majority of FDS applications, the reactor model reduces to a simple “mixed is burnt” approximation
called the Eddy Dissipation Concept (EDC) [40, 41].

The combustion model also determines the heat release rate for per unit volume, q̇′′′, which is a quantity
of fundamental importance in fire physics and typically the largest contribution to the velocity divergence,
Eq. (3.22). Once ṁ′′′α has been determined, the heat release rate follows by summing the mass production
rates for each species times their respective heats of formation. Details are discussed below in Section 5.2.2.

Before discussing the combustion model, we first discuss of our lumped species approach (Section 5.1),
which reduces the computational burden of the full chemical system by combining species into groups
that transport and react together. In other words, we reduce the number of transport equations we need
to solve, which significantly increases the speed of the code. Our basic mixing-controlled, fast chemistry
combustion model is presented in Section 5.2.1, followed by details on computing the heat release rate and
a simple model for thermal extinction. The model for the mixing time scale (needed in both EDC and
the general reactor model) is discussed in Section 5.2.4. In Section 5.2.5, we begin the discussion of our
generalized combustion model which is designed to handle both fast and slow chemistry and a range of
mixing conditions. For fire, this method holds promise for improved prediction of carbon monoxide and
soot. Each computational cell is treated as a partially-stirred batch reactor with a characteristic mixing
time. Once reactants are mixed, the reaction rate depends on kinetics. Section 5.2.9 discusses available
kinetic mechanisms within FDS, from infinitely fast chemistry (default) to Arrhenius rate laws and reversible
reactions.

5.1 Lumped Species Approach

In the typical FDS problem the primitive species are lumped into reacting groups and we consider the simple
reaction

Fuel+Air→ Products (5.1)

We refer to the Fuel, Air, and Products in Eq. (5.1) as lumped species. The lumped species approach is a
simplified reaction progress variable approach [42] in which all the progress variables are mass fractions.
This avoids any complications related to boundedness and ill-defined initial and boundary conditions.
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5.1.1 Relationship between Lumped and Primitive Species

In a simple hydrocarbon reaction, the reactants are the fuel, oxygen, and nitrogen and the products are carbon
dioxide, water vapor, and nitrogen. The primitive species mass fractions are given by the composition vector

Y = [YCH4 YO2 YN2 YCO2 YH2O]
T (5.2)

Lumped species are groups of primitive species which only exist in the flow in certain proportions. For
example, Air can be assumed to be a lumped species composed of 21 % O2, 79 % N2 by volume, plus trace
amounts of water vapor and carbon dioxide. The key assumption made in lumping primitive species is that
the new species groups transport (implying equal diffusivities) and react together.

In terms of primitive species, a one-step methane reaction may be written as

CH4 +2O2 +7.52N2→ CO2 +2H2O+7.52N2 (5.3)

This is equivalent to

9.52(0.21O2 + .79N2)︸ ︷︷ ︸
Air, Z0

+ CH4︸︷︷︸
Fuel, Z1

→ 10.52(0.095CO2 +0.19H2O+0.715N2)︸ ︷︷ ︸
Products, Z2

(5.4)

where 9.52 moles of Air react with 1 mole of Fuel to produce 10.52 moles of Products. Notice that the
primitive species have been grouped by volume fraction into lumped species and the lumped species sto-
ichiometric coefficients are the sum of the primitive species coefficients from Eq. (5.3). Note that 9.52 ×
0.21 is only approximately equal to 2. In practice the atom balance requires machine precision. To alleviate
this issue, FDS internally normalizes the lumped species volume fractions and makes any necessary adjust-
ments to the specified lumped stoichiometric coefficients. The lumped species mass fractions are denoted
Zi, i = 0,1, ...,NZ , where NZ is the number of tracked species. The Background species, Z0, is found from
Z0 = 1−∑

NZ
i=1 Zi. In the case of Eq. (5.4), two transport equations are solved (Fuel and Products).

The linear transformation from lumped species to primitive species is given by

Y = AZ (5.5)

where A is the transformation matrix (Ny rows× (Nz+1) columns). Each column of A represents a different
lumped species. The elements of A are the mass fractions for each primitive species in a given lumped
species:

aα i =
υα iWα

∑
β

υβ iWβ

(5.6)

where υα i are the volume fractions of primitive species α in lumped species i and Wα are the molecular
weights. If we want the primitive species in Eq. (5.4) and, as an example, say we have Z = [0.3 0.2 0.5]T ,
we can transform from lumped species to primitive species via

Y =


YO2

YN2

YCH4

YCO2

YH2O

=


0.2330 0 0
0.7670 0 0.7248

0 1 0
0 0 0.1514
0 0 0.1238


 0.3

0.2
0.5

=


0.0699
0.5925
0.2000
0.0757
0.0619

 (5.7)

To transform back to lumped species from primitive species we can use:

Z = BY ; B = (AT A)−1AT (5.8)

provided A has full rank and Y is realizable (i.e., the forward transformation is also possible).
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5.1.2 Default Hydrocarbon Combustion Chemistry

The default reaction equation in FDS, known as “simple chemistry,” is defined as follows:

ν0 (υO2,0 O2 +υN2,0 N2 +υH2 O,0 H2 O+υCO2,0 CO2)︸ ︷︷ ︸
Background, Z0

+ ν1 CmHnOaNb︸ ︷︷ ︸
Fuel, Z1

−→

ν2 (υCO2,2 CO2 +υH2 O,2 H2 O+υN2,2 N2 +υCO,2 CO+υS,2 Soot)︸ ︷︷ ︸
Products, Z2

(5.9)

Here, the volume fraction of primitive species α in lumped species i is denoted by υα i and the stoichiometric
coefficients for the lumped species i are denoted by νi.

Carbon monoxide and soot yields are zero by default. The user can specify the CO and soot yields (yCO
and yS respectively). The CO yield, and similarly for soot, is the mass of CO produced per mass of fuel
reacted:

yCO =
mass CO in Products
mass of Fuel reacted

(5.10)

In this reaction system, Air (Background) is lumped species 0, Fuel is lumped species 1, and Products is
lumped species 2. To find the stoichiometric coefficients of CO and soot within the products lumped species,
FDS uses

ν2υCO,2 =−ν1
W1

WCO
yCO (5.11)

ν2υS,2 =−ν1
W1

WS
yS (5.12)

The remaining coefficients come from an atom balance.

Example Consider a methane–air reaction where methane has a specified CO yield of yCO = 0.1 and a
Soot yield of yS = 0.01. The default FDS reaction system lumps these species into Products. Note that, by
default, Air is primarily composed of oxygen and nitrogen but includes trace amounts of carbon dioxide and
water vapor. For this reaction the transformation matrix, A, is

Air Fuel Products
CH4 0.000000 1.000000 0.000000
N2 0.763017 0.000000 0.720373
O2 0.231163 0.000000 0.000000

CO2 0.000592 0.000000 0.143067
CO 0.000000 0.000000 0.005589
H2O 0.005228 0.000000 0.130412

C 0.000000 0.000000 0.000559

The preceding table shows that the addition of carbon monoxide and soot increases the number of primitive
species in the reaction from five to seven. The number of lumped species, however, remains at three—the
composition of Products has changed to include to the two additional species. Note that FDS prints the A
matrix in the CHID.out file so that the user can double check the reaction system.
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5.2 Turbulent Combustion

5.2.1 Mixing-Controlled Fast Chemistry (Default)

For the vast majority of FDS applications the “mixed is burnt” assumption is adequate to model the reaction
system and the mean chemical source term for Fuel is modeled using the Eddy Dissipation Concept (EDC)
of Magnussen and Hjertager [40, 41]:

ṁ′′′F =−ρ
min(ZF,ZA/s)

τmix
(5.13)

Here, ZF and ZA are the lumped mass fractions of Fuel and Air, respectively, and s is the mass stoichiometric
coefficient for Air. The quantity τmix is a time scale for mixing which must be modeled (see Section 5.2.4).
The EDC model therefore states that the rate of fuel consumption is proportional to both the local limiting
reactant concentration and the local rate of mixing. As we will see below, the EDC model is a limiting case
of a generalized partially-stirred batch reactor model in which all the reactants are initially unmixed and the
rate of chemical kinetics is infinite.

5.2.2 Heat Release Rate

The heat release per unit volume is found by summing the species mass production rates times the respective
heats of formation:

q̇′′′ ≡−∑
α

ṁ′′′α ∆h0
f,α (5.14)

5.2.3 Extinction

Subgrid-scale modeling of gas phase suppression and extinction is still an area of active research in the
combustion community. The physical mechanisms underlying these phenomena are complex, and even
simplified models still rely on an accurate prediction of the flame temperature and local strain rate, neither
of which is readily available in an LES calculation.

A limitation of the mixing-controlled reaction model described above is that it assumes fuel and oxy-
gen always react regardless of the local conditions for temperature, dilution, or strain. For large-scale,
well-ventilated fires, this approximation is usually sufficient. However, if a fire is in an under-ventilated
compartment, or if a suppression agent like water mist or CO2 is introduced, or if the strain between the fuel
and oxidizing streams is high, burning may not occur.

FDS uses simple empirical rules—which ignore strain—to predict local extinction within a certain grid
cell based on resolved species concentrations and the mean cell temperature. The default FDS extinction
model consists of two parts (shown below) based on the concept of a critical flame temperature [43]. If
either criterion fails, then there is no chemical reaction and ṁ′′′α = 0 and q̇′′′ = 0 for that time step.

Basic Extinction Model

1. If the cell temperature is below the auto-ignition temperature (AIT) for all fuels in the cell then com-
bustion is suppressed. The auto-ignition temperature for each fuel is zero by default; thus, the user does
not need to specify an ignition source.

2. If the potential combustion heat release from a local pocket of stoichiometric fuel-air-product (here-
after “reactant”) mixture cannot raise the temperature of that mixture above an empirically deter-
mined critical flame temperature, TCFT, then combustion is suppressed. Consider the simple reaction
Fuel+Air→ Products. The local mass fractions of lumped species Fuel, Air, and Products in the cell
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at the beginning of the combustion time step are [ZF,ZA,ZP] and s is the mass stoichiometric coefficient
for Air (mass of Air required per mass of Fuel consumed). Based on the limiting reactant, the masses
in the local reactant mixture are defined as follows (take 1 kg as a basis; the hat ˆ indicates a reactant
mixture value):

ẐF = min(ZF,ZA/s) (5.15)

ẐA = s ẐF (5.16)

The stoichiometric mixture value for the product diluents is defined such that the following ratio holds:

ẐP

ẐA
=

unburned fuel︷ ︸︸ ︷
ZF− ẐF + ZP

ZA
(5.17)

In other words, within the reactant mixture we lump unburned fuel in with any products or diluents and
keep the ratio of diluent to air constant.

Another way to say this is that excess fuel acts as a diluent, but excess air does not. Hence, a large
computational cell which is mostly air with a small amount of fuel (and no additional diluents) is likely
to burn, whereas a cell which is mostly fuel with very little air will not burn.

Once the local reactant mixture has been determined, the extinction criterion is given by

ẐF (hF(T )+∆hc,F)+ ẐA hA(T )+ ẐP hP(T )< ẐF hF(TCFT)+ ẐA hA(TCFT)+ ẐP hP(TCFT) (5.18)

where T is the initial mean cell temperature and TCFT is the critical flame temperature. If the inequality
Eq. (5.18) is true, then combustion is suppressed—the heat of combustion is not sufficient to raise the
product mixture above its critical flame temperature.

Alternative Extinction Model In addition to the extinction model described above, there is the option
to select a simpler extinction model based on the limiting oxygen concentration. Details of this model are
discussed in Appendix D.

5.2.4 Reaction Time Scale Model

In this section we provide an expression for the mixing time based on the local state of the flow field. The
basic idea behind the model we propose here is to consider the three physical processes of diffusion, subgrid-
scale (SGS) advection, and buoyant acceleration and to take the fastest of these processes (locally) as the
controlling flow time scale [44].

It is important to consider the behavior of an SGS model as the LES filter width (cell size) varies. The
mixing times for diffusion, SGS advection, and buoyant acceleration scale differently with filter width and
if we look to the limits of the filter scales an interesting picture emerges. Referring to Fig. 5.1, let us move
from left to right along the horizontal axis following the thick black line which represents our time scale
model for a hypothetical flow condition. First, notice that the reaction time scale must be greater than or
equal to the chemical time scale, τchem, which, though usually small, is finite. At a slightly larger scale, we
expect the mixing time to vary as the square of the filter width because the mixing is controlled by molecular
diffusion. In this regime, denoted τd, the numerical solution is a DNS and this scaling law is valid while ∆

is less than the Kolmogorov scale, η , the length scale of the smallest turbulent eddies (for this discussion
we assume the Schmidt number (Sc) is of order unity). For a sufficiently high Reynolds number flow (such
that an inertial subrange exists), as the filter width increases beyond the Kolmogorov scale we encounter

47



10
−4

10
−2

10
0

10
2

10
−4

10
−3

10
−2

10
−1

10
0

10
1

∆ (m)

τ m
ix
 (

s)

τ
flame

τ
chem

τ
g
 ∼  ∆1/2

∆ = O(η)

τ
u
 ∼  ∆2/3

τ
d
 ∼  ∆2

Figure 5.1: Reaction time scale model.

a regime, marked τu, where turbulent advection controls the rate of mixing and the mixing time varies as
the two-thirds power of the filter width [15]. This is the regime where most LES submodels are valid (It is
important to appreciate that fire differs from turbulent combustion in that the assumption of locally high Re
is frequently invalid).

Now, let us imagine what should happen to the mixing time as the filter width increases beyond the
inertial subrange to a length scale larger than the height of the flame itself (actually a possibility in wildfire
modeling). We would not expect the inertial range scaling to continue up through the so-called “energy-
containing” range of turbulent length scales. Rather, for fires we expect buoyant acceleration to control the
mixing at these relatively coarse scales. A time scale based on a constant acceleration goes as the square root
of the filter width, as shown by the regime marked τg in the diagram. This shift in scaling may appear minor
given the log-log nature of the plot, but the effect of the acceleration-based time scale is indeed significant
for large cell sizes. Finally, note that the flame height presents a limit to the reaction time scale, here denoted
τflame, since all fuel must be consumed within a single cell.

Of course, the relative importance of the physical processes will depend on the flow. For example, if
gravity is weak, the τg line shifts up and may not affect the reaction time before the flame time scale is
reached. If the flow is highly turbulent, the inertial range scaling may be more dominant, which would be
indicated by a lowering of the τu line. Or, for highly turbulent jet flames τflame may be reached before the
acceleration time scale has any effect. Perhaps more typical for low strain fires, if an inertial subrange does
not exist (if the Reynolds number is too low relative to the Froude number), then the τu line in Fig. 5.1 moves
up out of the picture and we are left with diffusion and buoyancy to control the mixing.

The bold solid line in Fig. 5.1 is mathematically represented by

τmix = max(τchem,min(τd,τu,τg,τflame)) (5.19)

The mathematical details of the submodels are as follows:

τd =
∆2

DF
(5.20)
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τu =
Cu ∆√
(2/3)ksgs

(5.21)

τg =
√

2∆/g (5.22)

where DF is the diffusivity of the fuel species. Note that ksgs is the unclosed subgrid kinetic energy per unit
mass which by default is taken from the model for the turbulent viscosity (see Section 4.2). The advective
time scale constant is calibrated to match the Heskestad flame height correlation [11] and is set to Cu = 0.4.
The acceleration time scale τg is the time required to travel a distance ∆ starting from rest under a constant
acceleration, g = 9.81 m/s2.

5.2.5 Turbulent Batch Reactor Model

Modeling chemical reactions in turbulent flow is mathematically challenging because the length and time
scales associated with the reactions may be orders of magnitude below what can be spatially and temporally
resolved by the simulation. When the fuel and oxidizer are initially unmixed (diffusion flame) and the
kinetics are fast compared with mixing, the simple Eddy Dissipation Concept (EDC) model [40, 41] is
sufficient. However, for more complex reactions—such as carbon monoxide and soot formation—where
reaction and mixing time scales may overlap, we require a more generalized approach.

To this end, we have developed a simple mixing environment method to close the mean chemical source
term, ṁ′′′α , in Eq. (2.5). For pure diffusion flames our method is similar to EDC, but the method is not limited
to diffusion flames. Each computational cell is thought of as a turbulent batch reactor (TBR). At the start of
a time step, each cell has an initial concentration of species (reactants, products, inerts) that exist with some
degree of mixing. By default, each cell is completely unmixed at the start of a time step (corresponding to
a diffusion flame). Generally, the rate of mixing is dominated by turbulence. The mixing time, τmix, was
discussed in Section 5.2.4. Once mixed, species can react based on specified kinetic parameters—reactions
may be infinitely fast or governed by an Arrhenius rate law (Section 5.2.11).

At the start of the integration of the reactor model, the species transport equations have been solved and
we know the mean cell concentrations of all reactants in our chemical system. In this section, for simplicity
we will work in terms of primitive species mass fractions.

5.2.6 A Simple Subgrid Mixing Environment

The cell mean mass fraction of α , a function of time, is denoted Ỹα(t). The local concentration at any
point within the cell exists in one of two states: completely unmixed or completely mixed. Let Ŷα(t) denote
the mass fraction of α in the mixed reactor zone, initially equal to the cell mean, Ŷα(0) = Ỹ 0

α ≡ Ỹα(0).
With ψα ∈ [0,1] representing the sample space for the composition, the subgrid probability density function
(PDF) may be written as

f (ψα ; t) = w1δ (0−ψα)+w2δ (1−ψα)+w3δ (Ŷα [t]−ψα) (5.23)

where δ (x) is the Dirac delta function. In other words, if we look at a specific point, the mass fraction of
species α may only be 0, 1, or equal to the mixed zone value, Ŷα (see Fig. 5.2). The weights wi must satisfy
integral constraints on the cell:

∫
f (ψα ; t)dψα = 1,

∫
f (ψα ; t)ψα dψα = Ỹα(t).

For convenience, we define the unmixed fraction, ζ (t), as the fraction of mass within the cell existing
as either 0 or 1. To satisfy the integral constraints, the PDF weights are set to

w1 = ζ (1− Ỹ 0
α ) (5.24)

w2 = ζ Ỹ 0
α (5.25)
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Figure 5.2: Subgrid environment at an instant in time in a hypothetical computational cell (batch reactor).
(a) Well-resolved scalar field, highly unmixed, after turbulent transport. (b) Idealized subgrid environment:
the local mass fraction is either 0, 1, or equal to a mixed mean. In the present model, the gray region is
called the “mixed reactor zone” and evolves in time (in volume and composition) during the integration of
the batch reactor.

w3 = 1−ζ (5.26)

As shown in Appendix F, the unmixed fraction evolves by the following simple ODE

dζ

dt
=− ζ

τmix
(5.27)

with the solution
ζ (t) = ζ0 e−t/τmix (5.28)

The initial condition ζ0 may be specified, modeled algebraically, or taken from the update of a passive scalar
transport equation. Currently, FDS takes ζ0 = 1 as default for LES mode (diffusion flame) and ζ0 = 0 as
default for DNS (it is assumed that the mixing time scale is well-resolved).

5.2.7 Mean Chemical Source Term

At any point in time, the composition of the computational cell may be determined by combining the un-
mixed and mixed portions:

Ỹα(t) = ζ (t)Ỹ 0
α +(1−ζ (t))Ŷα(t) (5.29)

Differentiating (5.29) in time and using (5.27) we see that our model for the chemical source term needed
in (2.5) is given by

ṁ′′′α = ρ
dỸα

dt
= ρ

[
ζ

τmix
(Ŷα − Ỹ 0

α )+(1−ζ )
dŶα

dt

]
(5.30)

Note that the unmixed fraction is comparable to the complement of the fraction of “reacting fine structures”
in other EDC formulations [45, 46], but in our model this fraction evolves in time. A comparison between
our model and that of Panjwani et al. [46] is developed further in Appendix G.

An alternate derivation of (5.29) and (5.30) in terms of moments of the transport equation for the PDF
(5.23) is given in Appendix F. This derivation highlights that the implicit mixing model is a variant of
the ‘interaction by exchange with the mean’ or IEM model [47], which we refer to as the ‘interaction by
exchange with the mixed mean’ or IEMM.
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5.2.8 Evolution of the Composition in the Mixed Reactor Zone

Since (5.30) was obtained by differentiating (5.29) and we are ultimately interested in integrating over an
LES times step ∆t to obtain the final cell composition, it turns out to be easier and more accurate to simply
work in terms of (5.29). Thus, the problem is reduced to finding a solution for Ŷα(t), since the solution ζ (t)
is known from (5.28).

The composition in the mixed reactor zone changes by two processes: mixing (mass is transferred from
the unmixed zone to the mixed zone) and chemical reaction. As a consequence of the time splitting scheme,
the total mass within the reactor (computational cell) is constant over a time step. We denote this mass by
ρVc, where ρ is the initial cell mass density and Vc is the cell volume. The unmixed mass is denoted U(t)
and the mixed mass is denoted M(t). Given (5.28), the following equations describe the cell mass evolution:

ρVc =U(t)+M(t) (5.31)

U(t) = ζ (t)ρVc (5.32)

M(t) = (1−ζ (t))ρVc (5.33)

Within the mixed reactor zone, let mα(t) denote the mass of species α . The mass fraction of α in the
mixed zone may then be written as

Ŷα(t)≡
mα(t)
M(t)

(5.34)

This concentration is important because Arrhenius rate laws are based on the mixed composition only.
The ODE governing the mixed species mass is

dmα

dt
= Ŷα

dM
dt

+M
dŶα

dt

=−Ỹ 0
α

dU
dt

+M
dŶα

dt

= ρVc

[
ζ Ỹ 0

α

τmix
+(1−ζ )

dŶα

dt

]
(5.35)

The first term on the RHS accounts for mixing. The second term represents chemical kinetics. Note that in
the second step we have utilized the fact that the unmixed composition remains constant (at the initial cell
mean) throughout the time step. The third step follows from (5.27), (5.32), and (5.33).

5.2.9 Time Integration for Mixing and Reaction

In this section, we discuss the numerical solution of (5.35). Let ∆tk represent the kth sub-time step in the
integration (less than or equal to the LES time step δ t); tk = 0 at the start of the reactor integration. The
integration is time split such that mixing is done first, followed by reaction. A simple explicit update of
(5.35) over the sub-time interval tk to tk +∆tk is given by

m∗α = mα(tk)− [ζ (tk +∆tk)−ζ (tk)]Ỹ 0
α ρVc (5.36)

Ŷ ∗α = m∗α/M∗ (5.37)

Ŷα(tk +∆tk) = Ŷ ∗α +∆Ŷ ∗α (5.38)

The superscript ∗ indicates a post-mixing value. The first step, (5.36), is an analytical solution for the mixing
step (first term in (5.35)), obtained using (5.28). The mixing time scale τmix, needed in (5.28), is computed
once per LES time step using (5.19) and held constant during the reactor integration. The mixed mass,
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M∗ = M(tk +∆tk), is evaluated at the end of the subinterval using (5.33). For fast chemistry, we take only
one sub-step (∆tk=1 = δ t).

The method to determine ∆Ŷ ∗α (the change in mass fraction of α due to chemical reaction) in (5.38)
depends on the complexity of the reaction system. Below we first discuss the simplest case of infinitely fast
chemistry. Then we discuss finite-rate chemistry.

At the end of the time integration, the mixed zone composition, Ŷα(δ t), is combined with the unmixed
mass in (5.29) to obtain the final cell composition.

5.2.10 Infinitely Fast Chemistry (Default)

Single Reaction

For a single reaction, the change in fuel is based on the limiting reactant [41]:

∆ŶF =−min
(

ŶF,Ŷα

νFWF

να Wα

)
; for all reactants, α (5.39)

The minimum is taken in Eq. (5.39) to ensure that the reactant species mass fractions remain realizable.

Multiple Reactions

For multiple reactions with infinitely fast chemistry, the reaction rate is treated as a second-order (assuming
two reactants) Arrhenius reaction with zero activation energy. The Arrhenius constant is set to a large value.
Further discussion of the time integration for these cases is given in Appendix E.

5.2.11 Finite-Rate Chemistry (Arrhenius Reaction)

Consider a simple one-step forward reaction:

aA+bB→ cC+dD (5.40)

The rate expression for species A with a mixed zone concentration of CA in mol/cm3 and rate constant k is

dCA

dt
=−k Ca

A Cb
B (5.41)

Consider a set of Nr reactions with fuel F. The reaction rate (mol/(cm3 · s)) for F in the ith reaction is

rF,i =−ki ∏Caα,i
α (5.42)

For the ith Arrhenius reaction, the rate constant, ki, depends on the temperature, T , the temperature exponent,
ni, the pre-exponential factor, Ai, and the activation energy, Ei:

ki = Ai T ni e−Ea,i/RT (5.43)

Note that the units of Ea are J/mol and units of A are ((mol/cm3)1−∑aα )/s. Note that ∑aα is the order of the
reaction. The units of A take the appropriate form to ensure the units of Eq. (5.42) are mol/(cm3 · s).

The reaction rate for species α of the ith reaction is based on the ratio of stoichiometric coefficients:

rα,i =

(
να,i

νF,i

)
rF,i (5.44)
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The change in concentration for species α within the mixed reactor zone is then:
dCα

dt
= ∑

i
rα,i (5.45)

FDS only transports lumped species and only lumped species can be consumed or created. Note, however,
that any of the primitive species may participate in a reaction rate law.

It is more convenient for FDS to work in terms of mass fractions, Yα . The concentrations (mol/cm3)
and mass fractions (kg α/kg) are related by Cα = Yαρ/(Wα × 1000), where the density, ρ , has units of
kg/m3. To simplify the calculations within FDS, density and molecular weight are pulled out of the product
concentrations on the right hand side of Eq. (5.42) and combined with the other constants to form A′:

A′i = Ai ∏(Wα ×1000)−aα,i×
(

1 kmol
103 mol

)
×
(

106 cm3

1 m3

)
×WF (5.46)

Using A′i, the reaction rate in mass units becomes

r′F,i =−A′i ρ∑aα,i T ni e−Ei/RT
∏Y aα,i

α [=]

(
kg F
m3 · s

)
(5.47)

The mass rate of reaction per unit volume for species α in the ith reaction is

r′α,i =

(
να,iWα

νF,iWF

)
r′F,i [=]

(
kg α

m3 · s

)
(5.48)

Last, the rate of change in composition for species α in the mixed reactor zone becomes

dŶα

dt
=

1
ρ

∑
i

r′α,i [=]

(
kg α

kg · s

)
(5.49)

See Appendix E for a discussion on the algorithm used to ensure species remain bounded.

Third Body Reactions

At low pressures, it is common to see so-called third body reactions. These reactions require the presence
of some other molecule, M, for heat dissipation [48]. The reaction scheme is usually written as

A+B+M→ C+M (5.50)

The Arrhenius rate law has a first-order dependence on the concentration of M. Since M may be any other
molecule, we take CM = p̄/(RT ) = ρ/(W ×1000) [=] mol/cm3.

Time Integration for Finite-Rate Chemistry

For reactions other than single step, mixing controlled chemistry, a fourth-order explicit integrator with
error control is used. The time integration follows the procedure outlined in Eqs. (5.36) and (5.38), but
multiple subiterations are generally needed and the change in composition over the subinterval in the mixed
reactor zone, ∆Ŷ ∗α , is usually obtained by integrating an Arrhenius rate law (we say “usually” because a
combination of fast and finite-rate chemistry is permissible). More detail on the numerical methods of the
integrator, including a method to combat stiff chemistry, can be found in Appendix E.

5.2.12 Change in Species Compositions

Using the change in fuel concentration for each of the i reactions, the change in each species α is given by

∆Ŷα = ∑
i

(
να,iWα

νF,iWF,i

)
∆ŶF,i (5.51)
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Chapter 6

Thermal Radiation

Gas phase thermal conduction and radiation are represented by the divergence of the heat flux vector in the
energy equation, ∇ · q̇′′. This chapter describes the equations that govern the radiative component, q̇′′r .

6.1 Radiation Transport Equation

The Radiative Transport Equation (RTE) for an absorbing, emitting, and scattering medium is [49]

s ·∇Iλ (x,s) = −κ(x,λ ) Iλ (x,s)︸ ︷︷ ︸
Energy loss by absorption

− σs(x,λ ) Iλ (x,s)︸ ︷︷ ︸
Energy loss by scattering

+

B(x,λ )︸ ︷︷ ︸
Emission source term

+
σs(x,λ )

4π

∫
4π

Φ(s′,s) Iλ (x,s′) ds′︸ ︷︷ ︸
In-scattering term

(6.1)

where Iλ (x,s) is the radiation intensity at wavelength, λ ; s is the direction vector of the intensity; and
κ(x,λ ) and σs(x,λ ) are the local absorption and scattering coefficients, respectively. B(x,λ ) is the emission
source term, describing how much heat is emitted by the local mixture of gas, soot and droplets/particles.
The integral on the right hand side describes the in-scattering from other directions. The in-scattering and
scattering terms are detailed in Section 6.3.

In practical simulations, the spectral dependence of the RTE cannot be resolved accurately. Instead, the
radiation spectrum is divided into a relatively small number of bands and a separate RTE is derived for each
band. For instance, the band specific RTE for a non-scattering gas is

s ·∇In(x,s) = Bn(x)−κn(x) In(x,s), n = 1...N (6.2)

where In is the intensity integrated over the band n, and κn is the appropriate mean absorption coefficient
for the band. When the intensities corresponding to the bands are known, the total intensity is calculated by
summing over all the bands

I(x,s) =
N

∑
n=1

In(x,s) (6.3)

6.1.1 Radiation Source Term

The emission source term for radiation band n is

Bn(x) = κn(x) Ib,n(x) (6.4)
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where Ib,n is the fraction of the blackbody radiation at temperature T (x):

Ib,n(x) = Fn(λmin,λmax)σ T (x)4/π (6.5)

and σ is the Stefan-Boltzmann constant. The calculation of factors Fn is explained in Ref. [50]. The
measurement of the absorption coefficients, κn, is discussed in Appendix C.

Even with a reasonably small number of bands, solving multiple RTEs is very time consuming. For-
tunately, in most large-scale fire scenarios soot is the most important combustion product controlling the
thermal radiation from the fire and hot smoke. As the radiation spectrum of soot is continuous, it is pos-
sible to assume that the gas behaves as a gray medium. The spectral dependence is then lumped into one
absorption coefficient (N = 1) and the source term is given by the blackbody radiation intensity [51]

Ib(x) =
σ T (x)4

π
(6.6)

This is the default mode of FDS. For optically thin flames, however, where the yield of soot is small com-
pared to the yields of CO2 and water vapor, the gray gas assumption can lead to an over-prediction of the
emitted radiation. From a series of numerical experiments using methane as the fuel, it has been found that
six bands (N = 6) provide an accurate representation of the most important radiation bands of the fuel, CO2,
and water vapor [52]. Table 6.1 through Table 6.9 list the band limits for various fuel species. The location
of the bands have been adjusted to accommodate most of the features of the fuels spectra. If the absorption
of the fuel is known to be important, separate bands can be reserved for fuel, increasing the total number of
bands, N. The number of additional bands depends on the fuel, as discussed in Appendix C.

6.1.2 Radiation Contribution to Energy Equation

The radiant heat flux vector q̇′′r is defined

q̇′′r (x) =
∫

4π

s′ I(x,s′) ds′ (6.7)

The gas phase contribution to the radiative loss term in the energy equation is (under the gray gas assump-
tion)

−∇· q̇′′r (x)(gas) = κ(x) [U(x)−4π Ib(x)] ; U(x) =
∫

4π

I(x,s′) ds′ (6.8)

For N bands, the gas phase contribution to the radiative loss term in the energy equation is

−∇· q̇′′r (x)(gas) =
N

∑
n=1

κ(x)Un(x) −4πBn(x) ; Un(x) =
∫

4π

In(x,s′) ds′ (6.9)

In words, the net radiant energy gained by a grid cell is the difference between that which is absorbed
and that which is emitted.
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Table 6.1: Limits of the spectral bands for methane (CH4).

ω (1/cm) 10000 3800 3400 2400 2174 1000 50
6 Band Model 1 2 3 4 5 6

Soot CO2 CH4 CO2 H2O,CH4 H2OMajor Species
CO2, H2O H2O, Soot Soot Soot Soot CO2

λ (µm) 1.00 2.63 2.94 4.17 4.70 10.0 200

Table 6.2: Limits of the spectral bands for ethane (C2H6).

ω (1/cm) 10000 3800 3350 2550 1650 1090 50
6 Band Model 1 2 3 4 5 6

Soot CO2 C2H6 CO2 C2H6 H2OMajor Species
CO2, H2O H2O, Soot Soot CO, H2O, Soot H2O, Soot CO2, C2H6

λ (µm) 1.00 2.63 2.99 3.92 6.06 9.17 200

Table 6.3: Limits of the spectral bands for ethylene (C2H4).

ω (1/cm) 10000 3800 3375 2800 1650 780 50
6 Band Model 1 2 3 4 5 6

Soot CO2 C2H4 CO2 C2H4 H2OMajor Species
CO2, H2O H2O, Soot Soot CO, H2O, Soot H2O, Soot CO2

λ (µm) 1.00 2.63 2.96 3.57 6.06 12.82 200

Table 6.4: Limits of the spectral bands for propylene (C3H6).

ω (1/cm) 10000 3800 3250 2600 1950 1175 50
6 Band Model 1 2 3 4 5 6

Soot CO2 C3H6 CO2 C3H6 C3H6, H2OMajor Species
CO2, H2O H2O, Soot Soot CO, Soot H2O, Soot CO2

λ (µm) 1.00 2.63 3.08 3.85 5.13 8.51 200

Table 6.5: Limits of the spectral bands for propane (C3H8).

ω (1/cm) 10000 3800 3350 2550 1650 1175 50
6 Band Model 1 2 3 4 5 6

Soot CO2 C3H8 CO2 C3H8 H2OMajor Species
CO2, H2O H2O, Soot Soot CO, H2O, Soot H2O, Soot CO2

λ (µm) 1.00 2.63 2.99 3.92 6.06 8.51 200
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Table 6.6: Limits of the spectral bands for heptane (C7H16).

ω (1/cm) 10000 3800 3250 2550 1775 1100 50
6 Band Model 1 2 3 4 5 6

Soot CO2 C7H16 CO2 C7H16 H2OMajor Species
CO2, H2O H2O, Soot Soot CO, Soot H2O, Soot CO2

λ (µm) 1.00 2.63 3.08 3.92 5.63 9.09 200

Table 6.7: Limits of the spectral bands for toluene (C7H8).

ω (1/cm) 10000 3800 3200 2550 2050 1200 50
6 Band Model 1 2 3 4 5 6

Soot CO2 C7H8 CO2 C7H8 C7H8, H2OMajor Species
CO2, H2O H2O, Soot Soot CO, Soot H2O, Soot CO2

λ (µm) 1.00 2.63 3.12 3.92 4.88 8.33 200

Table 6.8: Limits of the spectral bands for methanol (CH3OH).

ω (1/cm) 10000 3825 3200 2600 1675 1125 50
6 Band Model 1 2 3 4 5 6

Soot CH3OH CH3OH CO2 CH3OH CH3OH, H2OMajor Species
CO2, H2O CO2, Soot Soot CO, Soot H2O, Soot CO2

λ (µm) 1.00 2.61 3.12 3.85 5.97 8.89 200

Table 6.9: Limits of the spectral bands for methyl methacrylate (MMA).

ω (1/cm) 10000 3800 3250 2650 2050 1250 50
6 Band Model 1 2 3 4 5 6

Soot CO2 MMA CO2 MMA MMA, H2OMajor Species
CO2, H2O H2O, Soot Soot CO, Soot H2O, Soot CO2

λ (µm) 1.00 2.63 3.08 3.77 4.88 8.00 200
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6.1.3 Correction of the Emission Source Term

In calculations of limited spatial resolution, the source term, Ib, defined in Eq. (6.6) requires special treat-
ment in the flaming region of the fire. Typical FDS calculations use grid cells that are tens of centimeters
in size, and consequently the computed temperatures constitute a bulk average for a given grid cell and are
considerably lower than the maximum temperature in a diffusion flame. Because of its fourth-power depen-
dence on the temperature, the source term must be modeled in those grid cells where combustion occurs.
Elsewhere, the computed temperature is used directly to compute the source term. It is assumed that this
“flaming region” is where the local heat release rate is non-zero, q̇′′′ > 0. In this region, the global radiative
fraction model is used. The emission source term is multiplied by a corrective factor, C:

Ib,f(x) =C
σ T (x)4

π
; C = max

1 ,
∑q̇′′′i jk>0

(
χr q̇′′′i jk +κi jk Ui jk

)
dV

∑q̇′′′i jk>0

(
4κi jk σ T 4

i jk

)
dV

 (6.10)

When the source term defined in Eq. (6.10) is substituted into Eq. (6.8), the net radiative emission from the
flaming region becomes the desired fraction of the total heat release rate.

The radiative fraction, χr, is a useful quantity in fire science. It is the nominal fraction of the combustion
energy that is emitted as thermal radiation. For most combustibles, χr is between 0.3 and 0.4 [53]. However,
in Eq. (6.10), χr is interpreted as the fraction of energy radiated from the flaming region. For a small fire with
a base diameter less than approximately 1 m, the local χr is approximately equal to its global counterpart.
However, as the fire increases in size, the global value will typically decrease due to a net re-absorption of
the thermal radiation by the increasing smoke mantle [54].

To account for the possibility that different fuels may have different values of radiative fraction, χr is
defined on a per-reaction basis, similar to the approach discussed by Gupta et al. [55]. If multiple χr values
are given, FDS will generate a local χr by weighting the reaction specific χr values by the local reaction
rates.

6.2 Numerical Method

This section describes how ∇· q̇′′r (the radiative loss term) is computed at all gas-phase cells, and how the
the radiative heat flux q̇′′r is computed at solid boundaries.

6.2.1 Angular Discretization

To obtain the discretized form of the RTE, the unit sphere is divided into a finite number of solid angles. The
coordinate system used to discretize the solid angle is shown in Figure 6.1. The discretization of the solid
angle is done by dividing first the polar angle, θ , into Nθ bands, where Nθ is an even integer. Each θ -band
is then divided into Nφ (θ) parts in the azimuthal (φ ) direction. Nφ (θ) must be divisible by 4. The numbers
Nθ and Nφ (θ) are chosen to give the total number of angles NΩ as close to the value defined by the user as
possible. NΩ is calculated as

NΩ =
Nθ

∑
i=1

Nφ (θi) (6.11)

The distribution of the angles is based on empirical rules that try to produce equal solid angles δΩl = 4π/NΩ.
The number of θ -bands is

Nθ = 1.17 N1/2.26
Ω

(6.12)
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Figure 6.1: Coordinate system of the angular discretization.

rounded to the nearest even integer. The number of φ -angles on each band is

Nφ (θ) = max
{

4,0.5NΩ

[
cos(θ−)− cos(θ+)

]}
(6.13)

rounded to the nearest integer that is divisible by 4. θ− and θ+ are the lower and upper bounds of the
θ -band, respectively. The discretization is symmetric with respect to the planes x = 0, y = 0, and z = 0. This
symmetry has three important benefits: First, it avoids the problems caused by the fact that the first-order
upwind scheme, used to calculate intensities on the cell boundaries, is more diffusive in non-axial directions
than axial. Second, the treatment of the mirror boundaries becomes very simple, as will be shown later.
Third, it avoids so called “overhang” situations, where s · i, s · j or s ·k changes sign inside the control angle.
These “overhangs” would make the resulting system of linear equations more complicated.

In the axially symmetric case these “overhangs” cannot be avoided, and a special treatment, developed
by Murthy and Mathur [56], is applied. In these cases Nφ (θi) is kept constant, and the total number of angles
is NΩ = Nθ ×Nφ . In addition, the angle of the vertical slice of the cylinder is chosen to be the same as δφ .

6.2.2 Spatial Discretization

The grid used for the RTE solver is the same as for the hydrodynamic solver. The radiative transport
equation (6.2) is solved using techniques similar to those for convective transport in finite volume methods
for fluid flow [57]; thus, the name given to it is the Finite Volume Method (FVM). More details of the model
implementation are included in Ref. [58].

The thermal radiation spectrum is first divided into bands, as described in section 6.1. The procedure
outlined below is applied for each band of a wide band model, and thus the subscript n has been removed for
clarity. The unit sphere is then discretized, as described in section 6.2.1. Finally, the computational domain
is divided into numerical grid as described in section 2.2. In each grid cell, a discretized equation is derived
by integrating Eq. (6.2) over the volume of cell i jk and the control angle δΩl , to obtain∫

δΩl

∫
Vi jk

s′ ·∇I(x′,s′)dx′ ds′ =
∫

δΩl

∫
Vi jk

κ(x′)
[
Ib(x′)− I(x′,s′)

]
dx′ ds′ (6.14)

The volume integral on the left hand side is replaced by a surface integral over the cell faces using the
divergence theorem.∫

δΩl

∫
Ai jk

(
s′ ·n′

)
I(x′,s′)dn′ ds′ =

∫
δΩl

∫
Vi jk

κ(x′)
[
Ib(x′)− I(x′,s′)

]
dx′ ds′ (6.15)
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Assuming that the radiation intensity I(x,s) is constant on each of the cell faces, the surface integral can be
approximated by a sum over the cell faces. Assuming further that I(x,s) is constant within the volume Vi jk
and over the angle δΩl , and that κ(x′) and Ib(x′) are constants within the volume Vi jk, we obtain

6

∑
m=1

Am Il
m

∫
Ωl
(s′ ·nm)ds′ = κi jk

[
Ib,i jk− Il

i jk

]
Vi jk δΩ

l (6.16)

where

Il
i jk radiant intensity in direction l

Il
m radiant intensity at cell face m

Ib,i jk radiant blackbody Intensity in cell
δΩl solid angle corresponding to direction l
Vi jk volume of cell i jk
Am area of cell face m
nm unit normal vector of the cell face m

Note that while the intensity is assumed constant within the angle δΩl , its direction covers the angle δΩl

exactly.The local incident radiation intensity is

Ui jk =
NΩ

∑
l=1

Il
i jkδΩ

l (6.17)

In Cartesian coordinates1, the normal vectors nm are the base vectors of the coordinate system and
the integrals over the solid angle do not depend on the physical coordinate, but the direction only. These
integrals are denoted as

Dl
m =

∫
Ωl
(s′ ·nm)ds′ (6.18)

and the discrete equation becomes

6

∑
m=1

Am Il
m Dl

m = κi jk

[
Ib,i jk− Il

i jk

]
Vi jk δΩ

l (6.19)

The cell face intensities, Il
m appearing on the left hand side of (6.19) are calculated using a first order upwind

scheme. Consider, for example, a control angle having a direction vector s. If the radiation is traveling in
the positive x-direction, i.e., s · i ≥ 0, the intensity on the upwind side, Il

xu is assumed to be the intensity in
the neighboring cell, Il

i−1 jk, and the intensity on the downwind side is the (unknown) intensity in the cell
itself Il

i jk. The discrete RTE can now be written using the upwind intensities Il
xu, Il

yu and Il
zu and Il

i jk:

Ax Il
xu Dl

xu +Ax Il
i jk Dl

xd+

Ay Il
yu Dl

yu +Ay Il
i jk Dl

yd+

Az Il
zu Dl

zu +Az Il
i jk Dl

zd

= κi jk Ib,i jkVi jk δΩ
l−κi jk Il

i jkVi jk δΩ
l (6.20)

1In the axisymmetric case equation (6.16) becomes a little bit more complicated, as the cell face normal vectors nm are not
always constant. However, the computational efficiency can still be retained.
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where the D-terms on the LHS are integrals (6.18) evaluated on upwind and downwind sides of the cell. In
the rectilinear mesh, Dl

xu =−Dl
xd and the equation can be simplified further. In addition, the integrals over

the solid angle can be calculated analytically

Dl
x =

∫
Ωl
(sl · i) dΩ =

∫
δφ

∫
δθ

(sl · i)sinθ dθ dφ =
∫

δφ

∫
δθ

cosφ sinθ sinθ dθ dφ

=
1
2
(
sinφ

+− sinφ
−)[

∆θ −
(
cosθ

+ sinθ
+− cosθ

− sinθ
−)] (6.21)

Dl
y =

∫
Ωl
(sl · j) dΩ =

∫
δφ

∫
δθ

sinφ sinθ sinθ dθ dφ

=
1
2
(
cosφ

−− cosφ
+
)[

∆θ −
(
cosθ

+ sinθ
+− cosθ

− sinθ
−)] (6.22)

Dl
z =

∫
Ωl
(sl ·k)dΩ =

∫
δφ

∫
δθ

cosθ sinθ dθ dφ

=
1
2

∆φ

[(
sinθ

+
)2−

(
sinθ

−)2
]

(6.23)

δΩ
l =

∫
Ωl

dΩ =
∫

δφ

∫
δθ

sinθ dθ dφ (6.24)

Equation (6.20) for the unknown intensity Il
i jk is written in the form

al
i jkIl

i jk = al
xIl

xu +al
yIl

yu +al
zI

l
zu +bl

i jk (6.25)

where

al
i jk = Ax|Dl

x|+Ay|Dl
y|+Az|Dl

z|+κi jk Vi jkδΩ
l (6.26)

al
x = Ax|Dl

x| (6.27)

al
y = Ay|Dl

y| (6.28)

al
z = Az|Dl

z| (6.29)

bl
i jk = κi jk Ib,i jk Vi jk δΩ

l (6.30)

Here i, j and k are the base vectors of the Cartesian coordinate system. θ+, θ−, φ+ and φ− are the upper and
lower boundaries of the control angle in the polar and azimuthal directions, respectively, and ∆θ = θ+−θ−

and ∆φ = φ+−φ−.
The solution method of (6.20) is based on an explicit marching sequence [59]. The marching direction

depends on the propagation direction of the radiation intensity. As the marching is done in the “downwind”
direction, the “upwind” intensities in all three spatial directions are known, and the intensity Il

i jk can be
solved directly from an algebraic equation. In the first cell to be solved, all the upwind intensities are
determined from solid or gas phase boundaries. In theory, iterations are needed if the reflections or scattering
are important, or if the scenario is optically very thick. Currently, no iterations are made.

6.2.3 Boundary Conditions

The boundary condition for the radiation intensity leaving a gray diffuse wall is given as

Iw(s) =
ε σ T 4

w

π
+

1− ε

π

∫
s′·nw<0

Iw(s′) |s′ ·nw| ds′ (6.31)
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where Iw(s) is the intensity at the wall, ε is the emissivity, and Tw is the wall surface temperature. In
discretized form, the boundary condition on a solid wall is given as

Il
w =

ε σ T 4
w

π
+

1− ε

π
∑

Dl′
w<0

Il′
w |Dl′

w| (6.32)

where Dl′
w =

∫
Ωl′ (s ·nw)dΩ. The constraint Dl′

w < 0 means that only the “incoming” directions are taken into
account when calculating the reflection. The net radiative heat flux on the wall is

q̇′′r =
NΩ

∑
l=1

Il
w

∫
δΩl

(s′ ·nw) ds′ =
NΩ

∑
l=1

Il
wDl

n (6.33)

where the coefficients Dl
n are equal to ±Dl

x, ±Dl
y or ±Dl

z, and can be calculated for each wall element at the
start of the calculation.

The open boundaries are treated as black walls, where the incoming intensity is the blackbody intensity
of the ambient temperature. On mirror boundaries the intensities leaving the wall are calculated from the
incoming intensities using a predefined connection matrix:

Il
w,i jk = Il′ (6.34)

Computationally intensive integration over all the incoming directions is avoided by keeping the solid angle
discretization symmetric on the x, y and z planes. The connection matrix associates one incoming direction
l′ to each mirrored direction on each wall cell.

6.3 Absorption and Scattering of Thermal Radiation by Droplets/Particles

The attenuation of thermal radiation by liquid droplets and particles is an important consideration, especially
for water mist systems [60]. Droplets and particles attenuate thermal radiation through a combination of
scattering and absorption [61]. The radiation-spray interaction must therefore be solved for both the accurate
prediction of the radiation field and for the particle energy balance. If the gas phase absorption and emission
in Eq. (6.1) are temporarily neglected for simplicity, the radiative transport equation becomes

s ·∇Iλ (x,s) =−
[
κp(x,λ )+σp(x,λ )

]
Iλ (x,s)+κp(x,λ ) Ib,p(x,λ )+

σp(x,λ )
4π

∫
4π

Φ(s,s′) Iλ (x,s′) ds′

(6.35)
where κp is the particle absorption coefficient, σp is the particle scattering coefficient and Ib,p is the emission
term of the particles. Φ(s′,s) is a scattering phase function that gives the scattered intensity fraction from
direction s′ to s.

6.3.1 Absorption and Scattering Coefficients

Radiation absorption and scattering by particles depends on their cross sectional areas and radiative material
properties. For simplicity, we assume that the particles are spherical in shape, in which case the cross
sectional area of a particle is πr2, where r is the particle radius. If the local number density distribution
of particles at location x is denoted by n(r(x)), the local absorption and scattering coefficients within a
spray/particle cloud can be calculated from:

κp(x,λ ) =
∫

∞

0
n(r(x)) Qa(r,λ ) πr2 dr (6.36)
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σp(x,λ ) =
∫

∞

0
n(r(x)) Qs(r,λ ) πr2 dr (6.37)

where Qa and Qs are the absorption and scattering efficiencies, respectively. For the computation of the
spray/particle cloud radiative properties, spherical particles are assumed and the radiative properties of the
individual particles are computed using Mie theory.

Based on Refs. [62] and [63], the real particle size distribution inside a grid cell is modeled as a mono-
disperse suspension whose diameter corresponds to the Sauter mean (d32) diameter of the poly-disperse
spray. This assumption leads to a simplified expression of the radiative coefficients

κp(x,λ ) = Ap(x) Qa(r32,λ ) (6.38)

σp(x,λ ) = Ap(x) Qs(r32,λ ) (6.39)

These expressions are functions of the total cross sectional area per unit volume of the droplets, Ap, which is
computed simply by summing the cross sectional areas of all the droplets within a cell and dividing by the
cell volume. For practical reasons, a relaxation factor of 0.5 is used to smooth slightly the temporal variation
of Ap.

6.3.2 Approximating the In-Scattering Integral

An accurate computation of the in-scattering integral on the right hand side of Eq. (6.35) would be extremely
time consuming and require a prohibitive amount of memory because the individual intensities in each
location would have to be stored. Instead, a simplified form of Eq. (6.35) can be derived:

s ·∇Iλ (x,s) =−
[
κp(x,λ )+σp(x,λ )

]
Iλ (x,s)+κp(x,λ ) Ib,p(x,λ )+

σp(x,λ )
4π

U(x,λ ) (6.40)

where U(x) is the total intensity integrated over the unit sphere and σp is an effective scattering coefficient.
The derivation of Eq. (6.40) is given in Appendix J. This simplified equation can be integrated over the
spectrum to get the band specific RTE’s. The procedure is exactly the same as that used for the gas phase
RTE. After the band integrations, the spray RTE for band n becomes:

s ·∇In(x,s) =−
[
κp,n(x)+σp,n(x)

]
In(x,s)+κp,n(x) Ib,p,n(x)+

σp,n(x)
4π

Un(x) (6.41)

where the source function is based on the average particle temperature within a cell.

6.3.3 Forward Fraction of Scattering

The effective scattering coefficient in Eq. (6.40) is defined:

σp(x,λ ) =
4π

4π−δΩl

(
1−χf(x,λ )

)
σp(x,λ ) (6.42)

where χf is the fraction of the total intensity originally within the solid angle δΩl that is scattered into the
same angle, δΩl . The computation of χf has been derived in Ref. [64]. It can be shown that here χf becomes:

χf(r,λ ) =
1

δΩl

∫ 1

µ l

∫ 1

µ l

∫
µp,π

µp,0

P0(θp,λ )[
(1−µ2)(1−µ ′2)− (µp−µµ ′)2

]1/2 dµp dµ dµ
′ (6.43)

where µp is a cosine of the scattering angle θp and P0(θp,λ ) is a single droplet scattering phase function

P0(θp,λ ) =
λ 2
(
|S1(θp)|2 + |S2(θp)|2

)
2Qs(r,λ )πr2 (6.44)
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S1(θp) and S2(θp) are the scattering amplitudes, given by Mie-theory. The integration limit, µ l , is a cosine
of the polar angle defining the boundary of the symmetric control angle, δΩl

µ
l = cos(θ l) = 1− 2

NΩ

(6.45)

The limits of the innermost integral are

µp,0 = µµ
′+
√

1−µ2
√

1−µ ′2 ; µp,π = µµ
′−
√

1−µ2
√

1−µ ′2 (6.46)

6.3.4 Solution Procedure

The absorption and scattering coefficients, κp and σp are not repeatedly calculated during the simulation.
Instead, they are tabulated at the beginning of the simulation for each band and a range of different Sauter
mean diameters, r32. The averaged quantities, now functions r32 only, are stored in one-dimensional arrays.
During the simulation, the local properties are found by table look-up.

In the band integration of κp and σp, a constant “radiation” temperature, Trad, is used to provide the
wavelength weighting (Planck function). Trad should be selected to represent a typical radiating flame tem-
perature. A value of 1173 K is used by default.

The absorption and scattering efficiencies, Qa and Qs, and the scattering phase function P0(θp,λ ), are
calculated using the MieV code developed by Wiscombe [65]. The spectral properties of the particles can be
specified in terms of a wavelength-dependent complex refractive index. Pre-compiled data are included for
water and a generic hydrocarbon fuel based on diesel fuel and heptane. For water, the values of the imaginary
part of the complex refractive index (related to the absorption coefficient) are taken from Ref. [66], and a
value of 1.33 is used for the real part. For fuel, the droplet spectral properties are taken from Ref. [67],
which includes measurements of the refractive index of a diesel fuel and a comparison of the values with
those of heptane. The diesel properties are used for the real part of the refractive index. For the complex
part, the heptane properties are used to avoid the uncertainty associated with different types of diesel fuels.
Usually, the radiative properties of the particle cloud are more sensitive to the particle size and concentration
than to values of the refractive index.

6.3.5 Heat absorbed by droplets

The droplet contribution to the radiative loss term is

q̇′′′r ≡−∇· q̇′′r (x)(droplets) = κp(x)
[
U(x)−4π Ib,p(x)

]
(6.47)

For each individual droplet, the radiative heating/cooling power is computed as

q̇r =
mp

ρp(x)
κp(x)

[
U(x)−4π Ib,p(x)

]
(6.48)

where mp is the mass of the droplet and ρp(x) is the total density of droplets in the cell.
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Chapter 7

Solid Phase

FDS assumes that solid surfaces consist of multiple layers, with each layer composed of multiple material
components that can undergo multiple thermal degradation reactions. Heat conduction is assumed only in
the direction normal to the surface. Each reaction can produce multiple gas and solid species. This chapter
describes the heat conduction equation for solid materials, plus the various coefficients, source terms, and
boundary conditions, including the computation of the convective heat flux q̇′′c at solid boundaries.

7.1 The Heat Conduction Equation for a Solid

The one-dimensional heat conduction equation for the solid phase temperature Ts(x, t) is applied in the
direction x pointing into the solid (the point x = 0 represents the surface)1

ρscs
∂Ts

∂ t
=

∂

∂x

(
ks

∂Ts

∂x

)
+ q̇′′′s (7.2)

Section 7.1.3 describes the component-averaged material properties, ks and ρscs. The source term, q̇′′′s ,
consists of chemical reactions and radiative absorption:

q̇′′′s = q̇′′′s,c + q̇′′′s,r (7.3)

Section 7.2 describes the term q̇′′′s,c, which is essentially the heat production (loss) rate given by the pyrolysis
models for different types of solid and liquid fuels. Section 7.1.1 describes the term q̇′′′s,r, the radiative
absorption and emission in depth.

The boundary condition on the front surface of a solid obstruction is

− ks
∂Ts

∂x
(0, t) = q̇′′c + q̇′′r (7.4)

where q̇′′c is the convective and q̇′′r the radiative flux. If the radiation is assumed to penetrate in depth, the
surface radiation term, q̇′′r , is set to 0. Section 7.1.2 describes the convective heat transfer to the solid surface.

On the back surface, there are two possible boundary conditions: (1) if the back surface is assumed to
be open either to an ambient void or to another part of the computational domain, the back side boundary

1In cylindrical and spherical coordinates, the heat conduction equation is written

ρscs
∂Ts

∂ t
=

1
r

∂

∂ r

(
r ks

∂Ts

∂ r

)
+ q̇′′′s ; ρscs

∂Ts

∂ t
=

1
r2

∂

∂ r

(
r2 ks

∂Ts

∂ r

)
+ q̇′′′s (7.1)

FDS offers the user these options for cases where the obstruction surface is not flat, but rather cylindrical or spherical in shape. This
option is useful in describing the behavior of small, complicated “targets” like cables or heat detection devices.
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condition is similar to that of the front side, or (2) if the back side is assumed to be perfectly insulated, an
adiabatic condition is used

− ks
∂Ts

∂x
= 0 (7.5)

The numerical solution of the solid phase heat equation is presented in detail in Appendix L.

7.1.1 Radiation Heat Transfer to Solids

If it is assumed that the thermal radiation from the surrounding gases is absorbed within an infinitely thin
layer at the surface of the solid obstruction, then the net radiative heat flux is the sum of incoming and
outgoing components, q̇′′r = q̇′′r,in− q̇′′r,out:

q̇′′r,in = ε

∫
s′·nw<0

Iw(s′) |s′ ·nw| dΩ (7.6)

q̇′′r,out = ε σ T 4
w (7.7)

However, many common materials are not opaque; thus, the radiation penetrates the material to some finite
depth. The radiative transport within the solid (or liquid) can be described as a source term in Eq. (7.2). A
“two-flux” model based on the Schuster-Schwarzschild approximation [50] assumes the radiative intensity
is constant inside the “forward” and “backward” hemispheres. The transport equation for the intensity in
the “forward” direction is

1
2

dI+(x)
dx

= κs
(
Ib− I+(x)

)
(7.8)

where x is the distance from the material surface and κs is the component-averaged absorption coefficient:

κs =
Nm

∑
α=1

Xα κs,α (7.9)

A corresponding formula can be given for the “backward” direction. Multiplying Eq. 7.8 by π gives us the
“forward” radiative heat flux into the solid

1
2

dq̇+r (x)
dx

= κs
(
σ T 4

s − q̇+r (x)
)

(7.10)

The radiative source term in the heat conduction equation is the sum of the “forward” and “backward” flux
gradients

q̇′′′s,r(x) =
dq̇+r (x)

dx
+

dq̇−r (x)
dx

(7.11)

The boundary condition for Eq. 7.10 at the solid (or liquid) surface is given by

q̇+r (0) = q̇′′r,in +(1− ε) q̇−r (0) (7.12)

where q̇−r (0) is the “backward” radiative heat flux at the surface. In this formulation, the surface emissivity
and the internal absorption are assumed constant.

The two-flux model has not been adapted for cylindrical or spherical geometry.

7.1.2 Convective Heat Transfer to Solids

The calculation of the convective heat flux depends on whether one is performing a direct numerical simu-
lation (DNS) or a large eddy simulation (LES). For DNS, the convective heat transfer is calculated directly
from the resolved gas and solid phase variables. For LES, there are a variety of empirical options.

68



Direct Numerical Simulation

In a DNS calculation, the convective heat flux to a solid surface q̇′′c is obtained directly from the gas temper-
ature gradient at the boundary

q̇′′c =−k
∂T
∂n

=−k
Tw−Tg

δn/2
(7.13)

where k is the thermal conductivity of the gas, n is the spatial coordinate pointing into the solid, δn is the
normal grid spacing, Tg is the gas temperature in the center of the first gas phase cell, and Tw is the wall
surface temperature.

Empirical Natural/Forced Convection Model

In an LES calculation, the convective heat transfer coefficient, h, is based on a combination of natural and
forced convection correlations:

q̇′′c = h(Tg−Tw) W/m2 ; h = max
[

C |Tg−Tw|
1
3 ,

k
L

Nu
]

W/(m2 ·K) (7.14)

where C is a empirical coefficient for natural convection (1.52 for a horizontal plate and 1.31 for a vertical
plane or cylinder) [68], L is a characteristic length related to the size of the physical obstruction, and k is the
thermal conductivity of the gas. The Nusselt number (Nu) depends on the geometric and flow characteristics.
For many flow regimes, it has the form:

Nu =C1 +C2 Ren Prm ; Re =
ρ|u|L

µ
; Pr = 0.7 (7.15)

For planar surfaces, the default values are C1 = 0, C2 = 0.037, n = 0.8, m = 0.33, and L = 1 m. For
cylindrical surfaces, the default values are C1 = 0, C2 = 0.683, n = 0.466, m = 0.33, and L = D, the diameter
of the cylinder. For spherical surfaces, the default values are C1 = 2, C2 = 0.6, n = 0.5, m = 0.33, and L = D,
the diameter of the sphere. Note that for a sphere, the coefficient for natural convection, C, is assumed to be
zero. It is possible to change these values for a particular application, but it is not possible to find a set of
parameters that is appropriate for the wide variety of scenarios considered. Various correlations for planes,
cylinders, and spheres can be found in Refs. [68, 69].

Optional Near-Wall Model

This section describes an optional model for the heat transfer coefficient which may be more appropriate for
well-resolved LES calculations. This model has been validated for low Reynolds number heated channel
flow [70] and has been used in a model to predict upper layer temperature in airplane cargo compartments
[71].

Wall models aim to mimic the sudden change from molecular to turbulent transport close to the walls
using algebraic formulations without resolving the smallest length scales. The theory follows dimensional
analysis based on the idea that shear at the wall is constant. Accordingly, non-dimensional velocity can be
defined as a function of non-dimensional length scale. In FDS, the wall model for velocity is implemented
based on the law of the wall with a semi-log fit connecting the limits of the viscous and log regions (see
Section 4.4).

By analogy to the near-wall model for velocity, the non-dimensional temperature is defined as

T+ =
Tg−Tw

Tτ

(7.16)
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where Tg is the first off-wall gas-phase cell temperature. The model profile is given by

T+ = Pr y+ for y+ ≤ 11.81 (7.17)

T+ =
Prt

κ
lny++BT for y+ ≥ 11.81 (7.18)

where Pr and Prt are the molecular and turbulent Prandtl numbers (Prt = 0.5 by default in FDS), and κ = 0.41
is the von Kármán constant. The temperature scale, Tτ , is defined by

Tτ ≡
q̇′′c

ρcpuτ

(7.19)

where q̇′′c , ρ , and cp are the convective heat flux at the wall, the gas density, and the specific heat, respectively.
The second term, BT , on the right hand side of Eq. 7.18 is a function of the molecular Prandtl number

and can be determined experimentally. Mathematically, this term is the integration constant stemming from
the relation between velocity and temperature gradients. Physically, it represents the resistance to the heat
and momentum transport close to the wall. FDS uses the experimental correlation proposed by Kader [72]

BT = (3.85Pr1/3−1.3)2 +2.12 lnPr (7.20)

The convective heat transfer coefficient (h) is obtained from the definition of h and T+:

h =
q̇′′c

(Tg−Tw)
=

ρcpuτ

T+
(7.21)

7.1.3 Component-Averaged Thermal Properties

The conductivity and volumetric heat capacity of the solid are defined as

ks =
Nm

∑
α=1

Xα ks,α ; ρscs =
Nm

∑
α=1

ρs,α cs,α (7.22)

where Nm is the number of material components forming the solid, Xα is the volume fraction of component
α , and ρs,α is the component density:

ρs,α = ρsYα (7.23)

where ρs is the density of the composite material and Yα is the mass fraction of component α . The solid
density is the sum of the component densities

ρs =
Nm

∑
α=1

ρs,α (7.24)

and the volume fraction of component α is computed as

Xα =
ρs,α

ρα

/
Nm

∑
α ′=1

ρs,α ′

ρα ′
(7.25)

where ρα is the true density of material α . Multi-component solids are defined by specifying the mass
fractions, Yα , and densities, ρα , of the individual components of the composite.
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7.2 Pyrolysis Models

This section describes how solid phase reactions and the chemical source term in the solid phase heat con-
duction equation, q̇′′′s,c, are modeled. This is commonly referred to as the “pyrolysis model,” but it actually
can represent any number of reactive processes, including evaporation, charring, and internal heating.

7.2.1 Specified Heat Release Rate

Often the intent of a fire simulation is merely to predict the transport of smoke and heat from a specified
fire. In other words, the heat release rate is a specified input, not something the model predicts. In these
instances, the desired HRR is translated into a mass flux for fuel at a given solid surface, which can be
thought of as the surface of a burner:

ṁ′′f =
f (t) q̇′′user

∆Hc
(7.26)

Usually, the user specifies a desired heat release rate per unit area, q̇′′user, plus a time ramp, f (t), and the mass
loss rate is computed accordingly.

7.2.2 Solid Fuels

Solids can undergo simultaneous reactions under the following assumptions:

• instantaneous release of gas species

• local thermal equilibrium between the solid and gaseous components

• no condensation of gaseous products

• no porosity effects2

Each material component may undergo several competing reactions, and each of these reactions may pro-
duce some other solid component (residue) and gaseous species according to specified yield coefficients.
These coefficients should sum to 1, but yields summing to less than 1 can account for products that are not
explicitly included in the simulation.

The local density of material component α evolves in time according to the solid phase species conser-
vation equation

∂

∂ t

(
ρs,α

ρs(0)

)
=−

Nr,α

∑
β=1

rαβ +Sα (7.27)

where Nr,α is the number of reactions for material α , rαβ is the rate of reaction β in units of 1/s, and ρs(0) is
the initial density of the material layer. Sα is the production rate of material component α as a result of the
reactions of the other components. The reaction rates are functions of solid and gas phase conditions and
calculated as a combination of Arrhenius and power functions:

rαβ =

(
ρs,α

ρs(0)

)ns,αβ

︸ ︷︷ ︸
Reactant dependency

Aαβ exp
(
−

Eαβ

RTs

)
︸ ︷︷ ︸

Arrhenius function

[XO2(x)]
nO2 ,αβ︸ ︷︷ ︸

Oxidation function

max
[
0,Sthr,α,β (Ts−Tthr,αβ )

]nt,αβ︸ ︷︷ ︸
Power function

(7.28)

The first term describes the dependence of the reaction rate on the concentration of the reactant itself, with
ns,αβ being the partial reaction order. The second term is the Arrhenius function which is commonly used

2Although porosity is not explicitly included in the model, it is possible to account for it because the volume fractions defined
by Eq. (7.25) need not sum to unity, in which case the thermal conductivity and absorption coefficient are effectively reduced.
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to describe the reaction kinetics, i.e. the dependence of the reaction rate on the material temperature. The
chapter on pyrolysis in the FDS Verification Guide describes methods for determining the kinetic parameters
Aαβ and Eαβ using bench-scale measurement techniques.

The third term can be used to describe the dependence on the local oxygen concentration XO2(x) and the
heterogeneous reaction order, nO2,αβ . The oxygen concentration profile within practical materials depends
on the competetion between diffusion and reactive consumption. As FDS does not solve for the transport
of gaseous species within concensed phase materials, a simple exponential profile is assumed and the user
is expected to specify the characteristic depth at which oxygen would be present. The local oxygen volume
fraction at depth x is calculated from the gas phase (first grid cell) oxygen volume fraction XO2,g as

XO2(x) = XO2,g exp(−x/Lg,αβ ) (7.29)

where Lg,αβ is the characteristic depth of oxygen diffusion. Specifying Lg,αβ = 0 means that the reaction
takes place only at the surface of the material.

The fourth term is the power function where Tthr,αβ is a threshold temperature that can be used to dictate
that the reaction must not occur below (Sthr,α,β =+1) or above (Sthr,α,β =−1) a user-specified temperature.
By default, the fourth term is deactivated (Sthr,α,β =+1,Tthr,αβ = 0 K).

Note that the solid species conservation equation 7.27 and the reaction rate equation 7.28 are inconsistent
with the common practice of chemical kinetics convention, where the unit of the reaction rate is usually
kg/(m3 · s) or mol/(m3 · s). The current form can be obtained by dividing a more conventional reaction rate
equation by ρs(0). This form is very close to the form used in [73] with the exception that initial layer
density ρs(0) is used for scaling instead of the instantaneous value.

The production term Sα is the sum over all the reactions where the solid residue is material α

Sα =
Nm

∑
α ′=1

Nr,α ′

∑
β=1

να,α ′β rα ′β (where Residueα ′β = Materialα ) (7.30)

where να,α ′β is the yield of component α from reaction β of component α ′. The volumetric production rate
of each gas species, γ , is

ṁ′′′γ = ρs(0)
Nm

∑
α=1

Nr,α

∑
β=1

νγ,αβ rαβ (7.31)

It is assumed that the gases are transported instantaneously to the surface, where the mass fluxes are given
by3

ṁ′′γ =
∫ L

0
ṁ′′′γ (x) dx (7.33)

where L is the thickness of the solid. The chemical source term in the heat conduction equation is

q̇′′′s,c(x) =−ρs(0)
Nm

∑
α=1

Nr,α

∑
β=1

rαβ (x)Hr,αβ (7.34)

where Hr,αβ is the heat of reaction.

3In cylindrical and spherical coordinates, the mass fluxes are

ṁ′′γ =
1

Rout

∫ Rout

Rin

ṁ′′′γ (x)r dr ; ṁ′′γ =
1

R2
out

∫ Rout

Rin

ṁ′′′γ (x)r2 dr (7.32)
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7.2.3 Phase Change Reactions

To describe freezing or melting of liquids, the two phases are separated by a sharp interface at the constant
phase-change temperature, Tf. The location of the phase boundary xf is governed by the equation

ks,1
∂Ts,1

∂x
− ks,2

∂Ts,2

∂x
= ρsHr,αβ

∂xf

∂ t
(7.35)

where 1 and 2 refer to the materials on the two sides of the boundary. In the context of the fixed-grid finite-
difference method, it is more convenient to allow a small deviation from Tf and solve for the amount of mass
reacting during the time step, ∆t, from the energy required to convert the mass from one phase to the other

ṁ′′′∆t =
ρscs(Ts−Tf)

Hr,αβ

(7.36)

This reaction can be implemented by setting Tthr,αβ = Tf and Aαβ = cs and turning on a specific phase-
change reaction mode. The reaction rate given by Eq. 7.28 is then divided by the factor Hr,αβ ∆t.

7.2.4 Liquid Fuels

The rate at which liquid fuel evaporates when burning is a function of the liquid temperature and the con-
centration of fuel vapor above the pool surface. According to the Clausius-Clapeyron relation, the volume
fraction of the fuel vapor above the surface is a function of the liquid boiling temperature

XF,` = exp
[
−hvWF

R

(
1
Ts
− 1

Tb

)]
(7.37)

where hv is the heat of vaporization, WF is the molecular weight of the fuel gas, Ts is the surface temperature,
and Tb is the boiling temperature of the fuel [74]. The evaporation rate of the fuel is governed by Stefan
diffusion [75]:

ṁ′′ = hm
pmWF

RTg
ln
(

XF,g−1
XF,`−1

)
; hm =

ShD`,g

L
(7.38)

where pm is the pressure, Tg is the temperature, and XF,g is the volume fraction of fuel vapor in the grid cell
adjacent to the pool surface. The Sherwood number is given by

Sh = 0.037 Sc
1
3 Re

4
5 ; Sc = 0.6 ; Re =

ρ ||u|| L
µ

(7.39)

The Reynolds number is calculated based on conditions in the cell adjacent to the surface. The length scale,
L, used in calculating the Reynolds number is 1 m unless otherwise specified and is the same length scale
used for the convective heat transfer calculation.

For simplicity, the liquid fuel itself is treated like a thermally-thick solid for the purpose of computing
the heat conduction. There is no computation of the convection of the liquid within the pool.

7.2.5 Shrinking and Swelling Materials

The layer thickness is updated according to the ratio of the instantaneous material density and the density of
the material in its pure form. In case of several material components, the amount of swelling and shrinking
is determined by the maximum and sum of these ratios, respectively. In each time step, the size of each
condensed phase cell is multiplied by the following factor:

δ =

maxα

(
ρs,α
ρα

)
if maxα

(
ρs,α
ρα

)
≥ 1

∑α

(
ρs,α
ρα

)
if maxα

(
ρs,α
ρα

)
< 1

(7.40)

Correspondingly, the densities are divided by the factor δ to conserve mass.
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7.3 Aerosol Deposition

By default, FDS assumes that soot is transported just like all other gaseous species. That is, the soot particles
are small enough that their settling velocity is small compared to the fire-driven flows of the gas containing
the soot. Near surfaces, however, other mechanisms can affect the soot, which results in its deposition
onto surfaces. The removal of soot via deposition can impact the visibility for egress and the time for
smoke detectors to activate. In forensic fire reconstructions, the amount of soot deposited on surfaces can
be correlated to post-fire observations. The deposition of particulates is also important for computing the
dispersion characteristics of aerosol toxicants like ash, radionuclides, or other particulate matter.

However, there is an option to treat any gas phase species as an aerosol that can be deposited on surfaces.
Aerosol deposition is determined by applying an empirical deposition velocity to aerosols near surfaces.
There are a number of phenomena that cause deposition: thermophoresis (where temperature gradients
push the aerosol towards or away from the surface), gravitational settling, diffusive deposition (where the
aerosols move along the boundary layer concentration gradient), and turbulent deposition (essentially impact
deposition due to a turbulent boundary layer). Other phenomena, such as electrical fields, can also result
in deposition but are not considered in FDS due to their relatively small contribution in compartment fire
scenarios.

The total aerosol deposition velocity to surfaces, udep, is determined by assuming the deposition phe-
nomena are independent, computing a deposition velocity for each mechanism, and then summing them [76]

udep = ug +uth +udt (7.41)

where ug is the gravitational settling velocity (for cells near upward-facing surfaces), uth is the thermophoretic
velocity, and udt is the combined diffusion-turbulence velocity. If the aerosol is located in a gas-phase cell
adjacent to a wall, then the aerosol (represented by the subscript α) is removed from the gas-phase and
deposited onto the surface by imposing the following boundary condition

ṁ′′dep,α = ρYα udep (7.42)

Using this boundary condition, the aerosol surface density that accumulates on surfaces is tracked, and the
amount of aerosol that deposits to a surface is removed from the adjacent gas-phase cell. Note that the
subscript α refers to a species that contains soot or aerosol, whereas the subscript ‘a’ in the remainder of the
section refers to the condensed phase soot or aerosol properties, such as mass or density.

7.3.1 Gravitational Settling

The gravitational settling velocity is given by [77]

ug = gma
Cn

6π χd µ ra
(7.43)

where ma is the particle mass, χd is a shape factor, µ is the dynamic viscosity of air, ra is the particle radius,
and Cn is the Cunningham slip correction factor given by [78]

Cn = 1+1.25 Kn+0.41 Kn e−0.88/Kn (7.44)

where Kn is the particle Knudsen number given by the ratio of the mean free path of the gas to the particle
radius. The mean free path of a gas is proportional to its temperature, thus Kn is computed as [79]

Kn =
λ

ra

Tg

T∞

(7.45)
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where λ is the mean free path of gas molecules and is 0.065 µm at a temperature of 25 ◦C and atmospheric
pressure.

For each aerosol species in the gas phase, a gravitational settling velocity is calculated and imposed on
the convective term (in the z-direction) in the species transport equation (Eq. 2.5). This approach is similar to
the drift flux model for smoke transport described in Hu et al. [80]. The gravitational settling velocity is also
included in the total deposition velocity to deposit aerosols onto upward-facing flat surfaces, as described
above.

7.3.2 Thermophoretic Deposition

The thermophoretic velocity is computed as

uth =
Kthν

Tg

dT
dx

(7.46)

This requires the wall temperature gradient, which is only resolved in a DNS simulation. For an LES
simulation, the temperature gradient is computed from the wall heat transfer coefficient.

dT
dx

=
h
(
Tg−Tw

)
kg

(7.47)

Kth is the thermophoretic velocity coefficient and is calculated using the following correlation [81]

Kth =
2Cs (α +Ct Kn) Cn

(1+3Cm Kn)(1+2α +2Ct Kn)
(7.48)

where Cs = 1.17 is the thermal slip coefficient, α is the ratio of the gas conductivity to the particle conduc-
tivity, Cm = 1.14 is the momentum accommodation coefficient, and Ct = 2.18 is the thermal accommodation
coefficient.

7.3.3 Turbulent Deposition

The diffusion-turbulence deposition velocity depends upon the flow regime (diffusion, diffusion-impaction,
or inertia-moderated). The deposition velocity for these regimes is given below [82].

udt =


0.086 Sc−0.7 uτ τ+ < 0.2

3.5×10−4 τ+2 uτ 0.2 < τ+ < 22.9
0.17 uτ τ+ > 22.9

(7.49)

where Sc is the particle Schmidt number, or the ratio of the kinematic viscosity to the Brownian diffusion
coefficient of the particle (ν/DB), uτ is the wall friction velocity computed by the wall model, and τ+ is the
dimensionless stopping distance given by [83]

τ
+ =

ρa (2ra)
2

18 µ2 u2
τ ρg (7.50)
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Chapter 8

Lagrangian Particles

Lagrangian particles are used to represent a wide variety of objects that cannot be resolved on the numerical
grid. Liquid droplets are the most common example. This chapter outlines the treatment of the transport, size
distribution, and mass, momentum and energy transfer to and from Lagrangian particles. The formulation
presented here closely follows the dispersed discrete-element formulation presented in [84].

8.1 Particle Transport in the Gas Phase

In the gas phase momentum equation, Eq. (4.34), the force term fb represents the momentum transferred
from particles to the gas. It is obtained by summing the force transferred from each particle in a grid cell
and dividing by the cell volume, V :

fb =
1
V ∑

[
1
2

ρCd Ap (up−u)|up−u|−
dmp

dt
(up−u)

]
(8.1)

where Cd is the drag coefficient, Ap is the particle cross-sectional area, rp is the particle radius, up is the par-
ticle velocity, mp is the particle mass, u is the gas velocity, and ρ is the gas density. The particle acceleration
is given by

dup

dt
= g− 1

2
ρ Cd Ap

mp
(up−u)|up−u| (8.2)

The particle position, xp, is determined from the equation

dxp

dt
= up (8.3)

The exact solution procedure of the above model is presented in Appendix I. The drag coefficient (default
based on a sphere) is a function of the local Reynolds number that is based on the particle diameter, D

Cd =


24/ReD ReD < 1

24
(
0.85+0.15Re0.687

D
)
/ReD 1 < ReD < 1000

0.44 1000 < ReD

(8.4)

ReD =
ρ |up−u|2rp

µ(T )
(8.5)

77



where µ(T ) is the dynamic viscosity of air at temperature T . For cylindrical particles,

Cd =


10/Re0.8

D ReD < 1

10
(
0.6+0.4Re0.8

D
)
/ReD 1 < ReD < 1000

1 1000 < ReD

(8.6)

Additional corrections are made to account for drag reduction due to the wake effect [85] and deformation
of the droplet [86].

8.1.1 Drag Reduction

Typically, Lagrangian particle models only consider two-way coupling between the gas and particles. This
means that each particle interacts with the carrier fluid individually. Momentum lost from a particle is
added to the fluid and vice versa. If the spray is dense enough, however, the individual particles influence
each other through aerodynamic interactions. These effects cannot be captured by the current Eulerian-
Lagrangian model for two reasons. First, the Lagrangian particles occupy no volume in the Eulerian space.
Second, the separation lengths would be of sub-grid scale in most practical simulations. The aerodynamic
interactions start to have an effect when the average particle spacing is less than 10 diameters [87, 88]. This
corresponds to a particle volume fraction, α , of approximately 0.01. Volume fractions as high as this can
sometimes be achieved inside water mist sprays. If the spray is even more dense, particle-particle collisions
or four-way coupling would need to be considered.

In a configuration where two particles with the same diameter are directly in line, the reduction of the
drag force on the second particle can be modeled by the following [85]:

Cd =Cd,0
F
F0

(8.7)

where Cd,0 is the single particle drag coefficient and F/F0 is the hydrodynamic force ratio of the trailing
particle to an isolated particle:

F
F0

=W

[
1+

Re
16

1

(L/D−1/2)2 exp
(
−Re

16
1

(L/D−1/2)

)]
(8.8)

where Re is the single particle Reynolds number, L is the distance between the particles, and W is the
non-dimensional, non-disturbed wake velocity at the center of the trailing particle

W = 1−
Cd,0

2

[
1− exp

(
−Re

16
1

(L/D−1/2)

)]
(8.9)

This model assumes that the spheres are traveling directly in-line with each other. As such, this provides an
upper bound for the strength of the aerodynamic interactions between two particles of the same size. The
separation distance L/D between particle centers is calculated from the local particle volume fraction and
local average particle diameter D̄

L/D = D̄(π/6α)
1
3 (8.10)

Here, local quantities are averaged over a single computational cell.
In reality, the spray is not monodisperse and the separation distance between the interacting particles

varies. In the simulation, the drag reduction factor in Eq. 8.7 is only used when the local droplet volume
fraction exceeds 1×10−5. The drag reduction model is turned on by default.
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An alternative approach to drag reduction was provided by Prahl et al. [87] who studied the interaction
between two solid spheres in steady or pulsating flow by detailed numerical simulations. According to their
study, the above correlation under-estimates the drag reduction significantly at small drop-to-drop distances.
The inflow pulsations were found to reduce the effect of the drag reduction. At large distances, the two
results are similar, the Ramírez-Muñoz correlation showing more drag reduction. This is not surprising
since the velocity profile of a fully developed axi-symmetric wake behind an axi-symmetric body is used
in developing the drag reduction correction in Eqs. 8.8 and 8.9. At short distances, the wake is not fully
developed and the assumption does not hold.

8.2 Liquid Droplet Size Distribution

The cumulative volume distribution for a liquid spray is represented by a combination of lognormal and
Rosin-Rammler distributions [89]:

Fv(D) =


1√
2π

∫ D

0

1
σ D′ exp

(
− [ln(D′/Dv,0.5)]

2

2σ2

)
dD′ (D≤ Dv,0.5)

1− exp
(
−0.693

(
D

Dv,0.5

)γ)
(Dv,0.5 < D)

(8.11)

where Dv,0.5 is the median volumetric droplet diameter (i.e., half the mass is carried by droplets with diame-
ters of Dv,0.5 or less), and γ and σ are empirical constants equal to approximately 2.4 and 0.6, respectively.1

Alternatively, the user may specify any form of size distribution using the tabulated input data.
The median droplet diameter is a function of the sprinkler orifice diameter, operating pressure, and

geometry. Research at Factory Mutual has yielded a correlation for the median droplet diameter [90]

Dv,0.5

d
∝ We−

1
3 (8.12)

where d is the orifice diameter of the nozzle. The orifice Weber number, the ratio of inertial forces to surface
tension forces, is given by

We =
ρp u2

p d
σ

(8.13)

where ρp is the liquid density, up is the discharge velocity, and σ is the liquid surface tension (72.8×10−3 N/m
at 20 ◦C for water). The discharge velocity can be computed from the mass flow rate, a function of the oper-
ating pressure and orifice coefficient known as the K-factor. FM reports that the constant of proportionality
in Eq. (8.12) appears to be independent of flow rate and operating pressure. Three different sprinklers were
tested in their study with orifice diameters of 16.3 mm, 13.5 mm, and 12.7 mm, and the constants were
approximately 4.3, 2.9, and 2.3, respectively. The strike plates of the two smaller sprinklers were notched,
while that of the largest sprinkler was not [90].

In real sprinkler systems, the operating pressure is affected by the number of open nozzles. Typically,
the pressure in the piping is high when the first sprinkler activates, and decreases when more and more
sprinkler heads are activated. The pipe pressure has an effect on flow rate, droplet velocity and droplet size
distribution. FDS does not predict the variation of pipe pressure; it should be specified by the user. The
following dependencies are used to update the droplet boundary conditions for mass flow, droplet speed,
and median diameter:

ṁp ∝ p1/2 ; up ∝ p1/2 ; Dv,0.5 ∝ p−1/3 (8.14)

1The Rosin-Rammler and lognormal distributions are smoothly joined if σ = 2/(
√

2π (ln 2) γ) = 1.15/γ .
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Figure 8.1: Cumulative Volume Fraction and Cumulative Number Fraction functions of the droplet size
distribution from a typical industrial-scale sprinkler. The median volumetric diameter, Dv,0.5, is 1 mm,
σ = 0.6 and γ = 2.4.

The droplet diameters are randomly chosen from the given size distribution. The cumulative number fraction
(CNF), Fn, is determined from the cumulative volume fraction, Fv, as follows

Fn(D) =
∫ D

0

F ′v(D
′)

D′3
dD′
/∫

∞

0

F ′v(D
′)

D′3
dD′ ; F ′v ≡

dFv

dD
(8.15)

Figure 8.1 displays the Rosin-Rammler/lognormal function and the resulting cumulative number fraction.
The selection of droplet diameters makes use of a stratified sampling technique to ensure that the droplets

span the entire range of sizes, even with a relatively small number of droplets. Without the stratification, the
tails of the distribution can be poorly represented. The procedure for selecting droplet sizes is as follows:

1. Suppose that the mass flow rate of the liquid is ṁ, that the time interval for droplet insertion is δ t, and
that the number of droplets inserted each time interval is N.

2. Divide the droplet diameter range into a number of bins of equal width (7 by default).

3. Randomly choose N integers, ni, ranging from 1 to the total number of bins.

4. Choose N uniformly distributed real numbers between 0 and 1 and calculate N random droplet diame-
ters:

Di = F−1
n

[
Fn(Dni,min)+U (0,1)(Fn(Dni,max)−Fn(Dni,min))

]
(8.16)

where U (0,1) is a uniformly distributed real number between 0 and 1 and Dni,min and Dni,max are the
minimum and maximum diameters of bin ni.

5. Compute weighting constants for each droplet Ci = Fn(Dni,max)−Fn(Dni,min).
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6. Compute a global weighting constant, C, to maintain the overall mass balance:

ṁ δ t =C
N

∑
i=1

Ci
4
3

πρp

(
Di

2

)3

(8.17)

The mass and heat transferred from each droplet will be multiplied by the weighting factor C.

8.3 Spray Initialization

The droplets are introduced into the simulation along a spherical surface whose diameter is a specified stand-
off distance from the nozzle orifice. It is assumed that the droplets have fully atomized by this stage. The
longitude of the initial droplet position, 0 ≤ θ < 2π , is randomly chosen from a uniform distribution. The
latitude, 0≤ φ < π , is randomly selected from the following distribution:

f (φ) = exp

[
−β

(
φ −φmin

φmax−φmin

)2
]

(8.18)

Note that φ = 0 is the south pole of the sphere. The spread parameter, β , is 5 by default. All the droplets
are given the same initial speed in the direction of the surface normal.

8.4 Heating and Evaporation of Liquid Droplets

Liquid droplets can represent either discrete airborne spheres or elements of the thin liquid film that forms
on wetted solids. These film “droplets” are still individually tracked as Lagrangian particles, but the heat
and mass transfer coefficients are different. In the discussion to follow, the term “droplets” will be used to
describe either form.

Over the course of a time step of the gas phase solver, the droplets in a given grid cell evaporate to
form the gas species α . The evaporation rate is a function of the liquid equilibrium vapor mass fraction,
Yα,`, the local gas phase vapor mass fraction, Yα,g, the (assumed uniform) droplet temperature, Tp, and the
local gas temperature, Tg. The subscript “g” refers to the average of the quantity in the cell occupied by the
droplet. The subscript “p” refers to the liquid droplet. If the droplet is attached to a solid, Ts is the surface
temperature. The mass and energy transfer between the gas and the liquid can be described by the following
set of equations [91]

dmp

dt
=−Ap hm ρg (Yα,`−Yα,g) (8.19)

dTp

dt
=

1
mp cp

[
q̇r +Ap h(Tg−Tp)+

dmp

dt
hv

]
(8.20)

The droplet is taken to be a pure liquid of species α (usually, either water or fuel). Here, mp is the mass
of the droplet (or that fraction of the surface film associated with the formerly airborne droplet), Ap is the
surface area of the liquid droplet, hm is the mass transfer coefficient to be discussed below, ρg is the gas
density, cp is the liquid specific heat, h is the heat transfer coefficient between the droplet and the gas, q̇r is
the rate of radiative heating of the droplet (see Eq. (8.35)), and hv is the latent heat of vaporization of the
liquid. The vapor mass fraction of the gas, Yα,g, is obtained from the gas phase mass transport equations,
and the liquid equilibrium vapor mass fraction is obtained from the Clausius-Clapeyron equation

Xα,` = exp
[

hvWα

R

(
1
Tb
− 1

Tp

)]
; Yα,` =

Xα,`

Xα,` (1−Wa/Wα)+Wa/Wα

(8.21)
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where Xα,` is the equilibrium vapor volume fraction, Wα is the molecular weight of the gaseous species α ,
Wa is the molecular weight of air, R is the universal gas constant, and Tb is the boiling temperature of the
liquid at standard atmospheric pressure.

Mass and heat transfer between liquid and gas are described with analogous empirical correlations. The
mass transfer coefficient, hm, is described by the empirical relationships [69]:

hm =
Sh D`g

L
; Sh =

 2+0.6 Re
1
2
D Sc

1
3 droplet

0.037 Re
4
5
L Sc

1
3 film

(8.22)

Sh is the Sherwood number, D`g is the binary diffusion coefficient between the liquid vapor and the sur-
rounding gas (usually assumed air), L is a length scale equal to either the droplet diameter or 1 m for a
surface film, ReD is the Reynolds number of the droplet (based on the diameter, D, and the relative air-
droplet velocity), ReL is the Reynolds number based on the length scale L, and Sc is the Schmidt number
(ν/D`g, assumed 0.6 for all cases).

An analogous relationship exists for the heat transfer coefficient [69]:

h =
Nu k

L
; Nu =

 2+0.6 Re
1
2
D Pr

1
3 gas-droplet

0.037 Re
4
5
L Pr

1
3 gas-film

(8.23)

Nu is the Nusselt number, k is the thermal conductivity of the gas, and Pr is the Prandtl number (assumed 0.7
for all cases). In cases where the droplet is actually a portion of the liquid film attached to a solid surface,
half of the droplet mass is heated or cooled by the solid surface and half is heated or cooled by the gas.

The exchange of mass and energy between liquid droplets and the surrounding gases (or solid surfaces)
is computed droplet by droplet. After the temperature of each droplet is computed, the appropriate amount
of vaporized liquid is added to the given mesh cell, and the cell gas temperature is reduced slightly based on
the energy lost to the droplet.

Equation (8.20) is solved semi-implicitly over the course of a gas phase time step as follows:

T n+1
p −T n

p

δ t
=

1
mp cp

[
q̇r +Ap h

(
Tg−

T n+1
p +T n

p

2

)
−Ap hm ρg

(
Y n+1

α,` +Y n
α,`

2
−Yα,g

)
hv

]
(8.24)

The equilibrium vapor mass fraction, Y n
α,`, is computed using T n

p via Eq. (8.21), and its value at the next time
step is approximated via

Y n+1
α,` ≈ Y n

α,`+

(
dYα,`

dTp

)n (
T n+1

p −T n
p

)
(8.25)

where the derivative of Yα,` with respect to temperature is obtained via the chain rule:

dYα,`

dTp
=

dYα,`

dXα,`

dXα,`

dTp
=

Wa/Wα

(Xα,`(1−Wa/Wα)+Wa/Wα)2
hvWα

RT 2
p

exp
[

hvWα

R

(
1
Tb
− 1

Tp

)]
(8.26)

The amount of evaporated liquid is given by

δmp =−δ t Ap hm ρg

[
Y n

α,`+
1
2

(
dYα,`

dTp

)n (
T n+1

p −T n
p

)
−Yα,g

]
(8.27)

The amount of heat transfer from the gas to the particle is

δqp = δ t Ap h

(
Tg−

T n
p +T n+1

p

2

)
(8.28)
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8.4.1 Filtered Volumetric Source Terms

The filtered volumetric source terms for mass and energy—which are required in the mass transport equa-
tion, Eq. (2.5), and the divergence expression, Eq. (2.10)—are obtained by summation of the individual
particle source contributions with a given cell divided by the LES time step, δ tLES, and the local cell vol-
ume, Vc. The bulk mass and energy source terms are, respectively,

ṁ′′′b,α =−
∑p ∑n δmn

p

δ tLESVc
; q̇′′′b =−

∑p ∑n δqn
p

δ tLESVc
. (8.29)

where n represents the sub-time step in the integration of the droplet mass and energy equations. The
summation over p is over all the particles within the cell.

8.4.2 Lagrangian Contribution to the Velocity Divergence

In practice, the filtered mass and energy source term contributions to the velocity divergence constraint are
collected in a single term denoted D_SOURCE within the code,

DSOURCE =
1
ρ

∑
α

W
Wα

ṁ′′′b,α +
1

ρcpT

(
q̇′′′b −∑

α

ṁ′′′b,α

∫ T

Tb

cp,α dT ′
)

(8.30)

which is embedded in Eq. (3.22).

8.5 Fire Suppression by Water

The previous sections describe heat transfer from a liquid droplet to a gas, a solid, or both. Although there is
some uncertainty in the values of the respective heat transfer coefficients, the fundamental physics are fairly
well understood. However, when the droplets encounter burning surfaces, simple heat transfer correlations
become more difficult to apply. The reason for this is that the water is not only cooling the surface and the
surrounding gas, but it is also changing the pyrolysis rate of the fuel. If the surface of the fuel is planar, it
is possible to characterize the decrease in the pyrolysis rate as a function of the decrease in the total heat
feedback to the surface. Unfortunately, most fuels of interest in fire applications are multi-component solids
with complex geometry at scales unresolvable by the computational grid.

8.5.1 Droplet Transport on a Surface

When a liquid droplet hits a solid horizontal surface, it is assigned a random horizontal direction and moves
at a fixed velocity until it reaches the edge, at which point it drops straight down at the same fixed velocity.
This “dripping” velocity has been measured for water to be on the order of 0.5 m/s [92, 93]. While attached
to a surface, the “droplet” is assumed to form a thin film of liquid that transfers heat to the solid, and heat
and mass to the gas. The film thickness, δ , is given by

δ = max

(
δmin,∑

4
3

π r3
p

A

)
(8.31)

where A is the area of the wall cell to which the droplet is attached. It is assumed that the minimum film
thickness, δmin, is 1×10−5 m. This prevents a very small amount of liquid from spreading across the entire
cell width. It is also assumed that the liquid is opaque with regard to thermal radiation.
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8.5.2 Reduction of Pyrolysis Rate due to Water

To date, most of the work in this area has been performed at Factory Mutual. An important paper on
the subject is by Yu et al. [94]. The authors consider dozens of rack storage commodity fires of different
geometries and water application rates, and characterize the suppression rates in terms of a few global
parameters. Their analysis yields an expression for the total heat release rate from a rack storage fire after
sprinkler activation

Q̇ = Q̇0 e−k(t−t0) (8.32)

where Q̇0 is the total heat release rate at the time of application t0, and k is a fuel-dependent constant. This
analysis is based on global water flow and burning rates. Equation (8.32) accounts for both the cooling of
non-burning surfaces as well as the decrease in heat release rate of burning surfaces. In the FDS model,
the cooling of unburned surfaces and the reduction in the heat release rate are computed locally. Thus, it
is awkward to apply a global suppression rule. However, the exponential nature of suppression by water is
observed both locally and globally, thus it is assumed that the local heat release rate per unit area can be
expressed in the form [92, 93]

q̇′′(t) = q̇′′0(t) e−
∫

k(t) dt (8.33)

where q̇′′0(t) is the burning rate per unit area of the fuel when no water is applied and k(t) is a linear function
of the local water mass per unit area, m′′w, expressed in units of kg/m2,

k(t) = a m′′w(t) s−1 (8.34)

Note that a is an empirical constant that is dependent on the material properties of the solid fuel and its
geometrical configuration.

8.6 Using Lagrangian Particles to Model Complex Objects

There are many real objects that participate in a fire that cannot be modeled easily as solid obstructions
that conform to the rectilinear mesh. For example, electrical cables, dry brush, tree branches, and so on,
are potential fuels that cannot be well-represented as solid cubes, not only because the geometry is wrong,
but also because the solid restricts the movement of hot gases through the complex collection of objects.
Additionally objects such as window screens also impose flow restrictions but are typically not resolvable in
an engineering calculation. As a potential remedy for the problem, these objects can be modeled as discrete
particles that are either spheres, cylinders or small sheets. Each particle can be assigned a surface type in
much the same way as is done for solid obstructions that conform to the numerical grid. The particle is
assumed to be thermally-thick, but for simplicity the heat conduction within the particle is assumed to be
one-dimensional in either a cylindrical, spherical or cartesian coordinate system.

It is assumed that the particles interact with the surrounding gas via an additional source term in the
energy conservation equation. For a grid cell with indices i jk, the source term is:

q̇′′′r,i jk ≡ (−∇ · q̇′′r )i jk = ∑κp
(
Ui jk−4σ T 4

p
)

(8.35)

where the summation is over all the particles within the cell. The effective absorption coefficient for a single
particle is given by

κp =
A

4δxδyδ z
(8.36)

where A is the surface area of the particle and δxδyδ z is the volume of the cell. The net radiative heat flux
onto the surface of the particle is

q̇′′r,p = ε

(
Ui jk

4
−σT 4

p

)
(8.37)
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8.6.1 Porous Media (Filters, Screens, Metal Meshes, and Similar Materials)

Filters, pebble beds, screens, grating ,and similar flow obstructions can all be considered as type of porous
media. In general, material forming the porous media will have dimensions will below that of the grid size
(e.g. 100 micron diameter filter fibers on a multi-cm grid). There is, therefore, no easy way to model these
materials using solid obstructions. Lagrangian particles can; however, be used to represent both the drag and
the mass of these materials. By placing particles in a plane or volume and assigning the particles a porous
media drag law, the effects of the porous media can be modeled. The pressure drop over a length ∆x through
porous media is given by [95]:

∆p
∆x

=
µ

K
u+ρ

Y√
K

u2 (8.38)

where K is a permeability constant, Y is an inertial constant, u is the velocity normal to the screen, ρ is the
density, and µ is the viscosity of the gas. In the case of a non-isotropic media, the constants K and Y will
vary with the flow direction. The force vector fb in Eq. (4.34) represents the momentum transferred from
the screen to the gas:

fb =

(
µ

K
+ρ

Y√
K
|u|
)

u (8.39)

For the special case of screens, gratings, and similar thin porous materials the permeability and inertial
constants have been experimentally correlated to screen porosity. K and Y are functions of the screen
porosity (free area/total area), φ :[96]:

K = 3.44×10−9
φ

1.6 m2 ; Y = 0.043φ
2.13 (8.40)

For a screen the force vector must account for the actual screen thickness, l, being less than that of the grid
cell:

fb = l
(

µ

K
+ρ

Y√
K
|u|
)(

u
δx

,
v

δy
,

w
δ z

)
(8.41)

This force term essentially spreads the pressure drop over the width of a grid cell.

8.7 Turbulent Dispersion

The effect of subgrid-scale turbulent fluid motion on the velocity and position of a Lagrangian particle may
be accounted for using a random walk model [97]. The position of a tracer particle obeys the stochastic
differential equation

dx∗ =
[

ũ+
1
ρ̄

∇(ρ̄ Dt)

]
dt +

√
2Dt dW (8.42)

where x∗ denotes the particle position (an asterisk signifies a particle property), ũ is the resolved LES
velocity, Dt is the turbulent diffusivity (taken from an eddy viscosity model, for example), and W is an
independent Wiener process. Notice that if no turbulent diffusion exists, the particle follows the resolved
flow. The term added to the resolved velocity accounts for the deterministic mean drift and the random walk
term (Wiener process) accounts for the reorientation effect of unresolved turbulent motion.

For those unfamiliar with stochastic differential equations, the Wiener process may be understood nu-
merically as dW(t) = (δ t)1/2 ζ (t) in the limit δ t→ 0, where ζ (t) is an independent standardized Gaussian
random variable [15]. In FDS, ζ (t) are generated from a Box-Muller transform [98].
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Chapter 9

Fire Detection Devices

FDS predicts the thermal environment resulting from a fire, but it relies on empirical models that describe
the activation of various fire detection devices. These models are described in this section.

9.1 Sprinklers

The temperature of the sensing element (or “link”) of an automatic fire sprinkler is estimated from the
differential equation put forth by Heskestad and Bill [99], with the addition of a term to account for the
cooling of the link by water droplets in the gas stream from previously activated sprinklers

dTl

dt
=

√
|u|

RTI
(Tg−Tl)−

C
RTI

(Tl−Tm)−
C2

RTI
β |u| (9.1)

where u is the gas velocity, RTI is the response time index, Tl is the link temperature, Tg is the gas temper-
ature in the neighborhood of the link, Tm is the temperature of the sprinkler mount (assumed ambient), and
β is the volume fraction of (liquid) water in the gas stream. The sensitivity of the sprinkler link is charac-
terized by its RTI value. The amount of heat conducted away from the link by the mount is indicated by the
“C-Factor”, C. The RTI and C-Factor are determined experimentally. The constant C2 has been empirically
determined by DiMarzo and co-workers [100, 101, 102] to be 6×106 K/(m/s)1/2, and its value is relatively
constant for different types of sprinklers.

The algorithm for heat detector activation is exactly the same as for sprinkler activation, except there
is no accounting for conductive losses or droplet cooling. Note that neither the sprinkler nor heat detector
models account for thermal radiation.

9.2 Heat Detectors

As far as FDS is concerned, a heat detector is just a sprinkler with no water spray. In other words, the
activation of a heat detector is governed by Eq. (9.1), but with just the first term on the right hand side:

dTl

dt
=

√
|u|

RTI
(Tg−Tl) (9.2)

Both the RTI and activation temperature are determined empirically.
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9.3 Smoke Detectors

An informative discussion of the issues associated with smoke detection can be found in the SFPE Handbook
chapter “Design of Detection Systems,” by Schifiliti, Meacham, and Custer [103]. The authors point out
that the difficulty in modeling smoke detector activation stems from a number of issues: (1) the production
and transport of smoke in the early stage of a fire are not well-understood, (2) detectors often use complex
response algorithms rather than simple threshold or rate-of-change criteria, (3) detectors can be sensitive to
smoke particle number density, size distribution, refractive index, composition, etc., and (4) most computer
models, including FDS, do not provide detailed descriptions of the smoke besides its bulk transport. This
last point is the most important. At best, in its present form, FDS can only calculate the velocity and smoke
concentration of the ceiling jet flowing past the detector. Regardless of the detailed mechanism within the
device, any activation model included within FDS can only account for the entry resistance of the smoke due
to the geometry of the detector. Issues related to the effectiveness of ionization or photoelectric detectors
cannot be addressed by FDS.

Consider the simple idealization of a “spot-type” smoke detector. A disk-shaped cover lined with a fine
mesh screen forms the external housing of the device, which is usually mounted on the ceiling. Somewhere
within the device is a relatively small sensing chamber where the smoke is actually detected in some way. A
simple model of this device has been proposed by Heskestad [103]. He suggested that the mass fraction of
smoke in the sensing chamber of the detector Yc lags behind the mass fraction in the external free stream Ye

by a time period δ t = L/u, where u is the free stream velocity and L is a length characteristic of the detector
geometry. The change in the mass fraction of smoke in the sensing chamber can be found by solving the
following equation:

dYc

dt
=

Ye(t)−Yc(t)
L/u

(9.3)

The detector activates when Yc rises above a detector-specific threshold.
A more detailed model of smoke detection involving two filling times rather than one has also been

proposed. Smoke passing into the sensing chamber must first pass through the exterior housing, then it must
pass through a series of baffles before arriving at the sensing chamber. There is a time lag associated with
the passing of the smoke through the housing and also the entry of the smoke into the sensing chamber.
Let δ te be the characteristic filling time of the entire volume enclosed by the external housing. Let δ tc be
the characteristic filling time of the sensing chamber. Cleary et al. [104] suggested that each characteristic
filling time is a function of the free-stream velocity u outside the detector

δ te = αeuβe ; δ tc = αcuβc (9.4)

The α and β parameters are empirical constants related to the specific detector geometry. Suggested values
for these parameters are listed in the FDS User’s Guide [3]. The change in the mass fraction of smoke in the
sensing chamber Yc can be found by solving the following equation:

dYc

dt
=

Ye(t−δ te)−Yc(t)
δ tc

(9.5)

where Ye is the mass fraction of smoke outside of the detector in the free-stream. A simple interpretation of
the equation is that the concentration of the smoke that enters the sensing chamber at time t is that of the
free-stream at time t−δ te.

An analytical solution for Eq. (9.5) can be found, but it is more convenient to simply integrate it numer-
ically as is done for sprinklers and heat detectors. Then, the predicted mass fraction of smoke in the sensing
chamber Yc(t) can be converted into an expression for the percent obscuration per unit length by computing:

Obscuration =
(

1− e−KmρYcl
)
×100 % per length l (9.6)
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where Km is the mass extinction coefficient, ρ is the density of the external gases in the ceiling jet, and l is
the unit of length over which the light is attenuated1. For most flaming fuels, a suggested value for Km is
8700 m2/kg ± 1100 m2/kg at a wavelength of 633 nm [105].

The SFPE Handbook [103] has references to various studies on smoke detection and suggested values
for the characteristic length L. FDS includes the one-parameter Heskestad model as a special case of the
four-parameter Cleary model. For the Cleary model, the user must specify αe, βe, αc, and βc, whereas
for the Heskestad model, only L = αc needs to be specified. Equation (9.5) is still used, with αe = 0 and
βe = βc =−1. Proponents of the four-parameter model claim that the two filling times are needed to better
capture the behavior of detectors in a very slow free-stream (u < 0.5 m/s). Rather than declaring one model
better than another, the algorithm included in FDS allows the user to pick these various parameters, and in
doing so, pick whichever model the user feels is appropriate [106].

Additionally, FDS can model the behavior of beam and aspiration smoke detectors. For a beam detector,
the user specifies the emitter and receiver positions and the total obscuration at which the detector will alarm.
FDS will then integrate the obscuration over the path length using the predicted soot concentration in each
grid cell along the path:

Obscuration =
(

1− e−Km
∫

ρYs dl
)
×100 % (9.7)

where the integration is carried out over the path of the beam.
For an aspiration detector, the user specifies the sampling locations, the flow rate at each location, the

transport time from each sampling point to the detector, the flow rate of any bypass flow, and the total
obscuration at which the detector alarms. FDS computes the soot concentration at the detector by weighting
the predicted soot concentrations at the sampling locations with their flow rates after applying the appropriate
time delay. See the FDS User’s Guide [3] for details.

1Typically, the activation criterion for a spot-type smoke detector is listed as a percent obscuration per foot or per meter. For the
former, l = 0.3048 m and for the latter, l = 1 m.
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Chapter 10

Heating, Ventilation, and Air Conditioning
(HVAC)

HVAC systems are found throughout the built environment. During a fire, HVAC ducts can serve as a path
for heat and combustion products to be moved through a building and the ducts can serve as a supply of
fresh air. In some facilities, such as data centers and clean rooms, fire detection devices are placed inside of
HVAC ducts. HVAC systems may also serve as part of the fire protection system for a building when used
to exhaust smoke or maintain stairwell pressurization.

FDS has relatively simple fixed flow boundary conditions for velocity or mass flux, and it has a simple
pressure boundary condition. While these can adequately represent very simple HVAC features, they cannot
model an entire multi-room system. There is no coupling of the mass, momentum, and energy solutions
amongst the multiple inlets and outlets comprising the HVAC network. To address this limitation, an HVAC
network solver has been added to FDS.

The reader may find it useful to review similar work in coupling CFD to a 1-D nodal model for analysis
of ventilation in tunnel fires [107, 108].

10.1 Governing Equations

The overall HVAC solver is based on the MELCOR [109] thermal hydraulic solver. MELCOR is a com-
puter program for simulating accidents in nuclear power plant containment buildings. The Fire and Smoke
Simulator (FSSIM) [110], a network fire model, has shown prior success in using the MELCOR solver to
model fire spread and smoke movement in the presence of complex ventilation systems, and the FDS im-
plementation of the MELCOR solver is largely based on the implementation found in FSSIM. The coupling
of the HVAC solver to the remainder of the FDS computation is in part based upon approaches taken in
GOTHIC [111], another containment analysis code that couples CFD-like features for large containment
volumes with a network model for piping and ventilation.

The MELCOR solver uses an explicit solver for the conservation equations of mass and energy com-
bined with an implicit solver for the conservation of momentum equation. An HVAC system is represented
as a network of nodes and ducts. A node represents where a duct joins with the FDS computational domain
or where multiple ducts are joined such as at a tee joint. A duct segment in the network represents any con-
tinuous flow path not interrupted by a node and as such may include multiple fittings (elbows, expansions,
or contractions, etc.) and may have varying area over its length. The current implementation of the model
does not account for mass storage within an HVAC network. The nodal conservation equations of mass,
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energy, and momentum (in that order) are:

∑
j

ρ j u j A j = 0 (10.1)

∑
j

ρ j u j A j h j = 0 (10.2)

ρ jL j
du j

dt
= (pi− pk)+(ρg∆z) j +∆p j−

1
2

K jρ j
∣∣u j
∣∣u j (10.3)

where u is the duct velocity, A is the duct area, and h is the enthalpy of the fluid in the duct. The subscript
j indicates a duct segment, the subscripts i and k indicate nodes (where one or more ducts join or where a
duct terminates in a compartment). ∆p is a fixed source of momentum (a fan or blower), L is the length of
the duct segment, and K is the total dimensionless loss coefficient of the duct segment (which includes wall
friction losses and minor losses).

Since nodes have no volume, the mass and energy conservation equations require that what flows into a
node must also flow out. In the momentum equation the terms on the right hand side consist of the pressure
gradient between the upstream and the downstream node, the buoyancy head, pressure rise due to an external
source (e.g., a fan or blower), and the pressure losses due to wall friction or the presence of duct fittings.

10.2 Solution Procedure

The momentum equation (10.3) is non-linear with respect to velocity due to the loss term. Additionally,
the pressure difference between two nodes in the network is impacted by the pressure change at all nodes
coupled to that duct either directly (part of the same duct network) or indirectly (connected to the same
compartment as another duct network). Solving the momentum equation, requires accounting for both of
these. This is done with the following discretization:

un+1
j = un

j +
∆tn

ρ jL j

[
(p̃n

i − p̃n
k)+(ρg∆z)n−1

j +∆pn−1
j − 1

2
K jρ j

(∣∣∣un−
j +un+

j

∣∣∣un−
∣∣∣un+

j

∣∣∣un−
j

)]
(10.4)

The superscripts n+ and n− on the velocity are used to linearize the flow loss in a duct to avoid a non-linear
differential equation for velocity. The n+ superscript is the prior iteration value and the n− is either the
prior iteration value or zero if flow reversal occurred between iterations. This approach is used to speed
convergence when duct flows are near zero to avoid large changes in K if the forward and reverse losses are
markedly different. Note that the node pressures are not expressed as Pn

i , but rather as p̃n
i . This indicates

an extrapolated pressure at the end of the current time step rather than the actual pressure at the end of
the time step. The pressure in a compartment is a function of the mass and energy flowing in and out. If
that compartment is connected to other compartments by doors or other openings, then the pressure is also
dependent upon flows into and out those other compartments. Those mass and energy flows include both
those being predicted by the HVAC model and those being predicted by the CFD model. For example, in
Fig. 10.1, the un-shaded compartments have pressure solutions that are dependent upon the flows predicted
by both the HVAC model and the CFD model and all of those compartments need to be included in the
extrapolated pressure for those compartments. Since the two models are not fully coupled, the extrapolated
pressure is an estimate of the pressure at the end of the time step based upon the pressure rise for the prior
time step.

The extrapolated pressure for a compartment can be determined by using Eq. (3.27) and correcting
the integral over velocity for the current solution of all interdependent HVAC flows into or out of an FDS
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Figure 10.1: Illustration of interdependent pressure solutions. All unshaded compartments have pressures
that are dependent upon each other.

pressure zone:

p̃n
i = pn−1

i +

(
dpn−1

i
dt

+
∑ j un−1

j An−1
j −∑ j un

jA
n
j∫

Ωm
P dV

)
∆tn = p̃∗n

i −
∆tn

∑ j un
jA

n
j∫

Ωm
P dV

(10.5)

If the summation term for the velocities being predicted in this timestep is removed from Eq. (10.5) and
placed on the left hand side of Eq. (10.4) and the remaining terms of Eq. (10.5) are placed on the right hand
side we obtain the following:

un
j

(
1+

∆tnK j

2L j

∣∣∣un−
j +un+

j

∣∣∣)− ∆tn2

ρ jL j

∑ j∈i un
jA
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j −∑ j∈k un

jA
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j∫

Ωm
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=
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∆tn

ρ jL j
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k +(ρg∆z) j +∆p j)+

∆tnK j

2L j

∣∣∣un+
j

∣∣∣ ∣∣∣un−
j

∣∣∣ (10.6)

If node i or node k for duct j in Eq. (10.6) is an internal duct node, then extrapolated pressures are not
computed and the actual node pressure is solved for. Applying Eq. (10.6) to each duct results in a linear set
of equations. Adding additional equations to the set for the mass conservation at internal duct nodes, results
in complete set of equations. The solution scheme is as follows:

1. Determine the boundary conditions at all points where the HVAC network joins the FDS computational
domain using the previous time step values.

2. Compute the extrapolated pressures for each pressure zone using the previous iteration (previous time
step if the first iteration).
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3. Assemble the linear set of equations for conservation of momentum and conservation of mass.

4. Solve the equation and check the solution for errors in mass conservation, flow reversal over the time
step, and the magnitude of change in the velocity solution for each duct. If any convergence check fails,
the solution is re-iterated with new extrapolated pressures. Density and enthalpy values are taken as
the upwind values in each iteration. After each iteration, the temperature and density of each node are
update using the velocity and pressure solution. The node temperature is computed by summing the
enthalpy flows into the node and computing the average temperature that represents the total enthalpy.
Density is then updated using the equation of state and the new temperature.

10.2.1 Filtration

Filters have two effects on the flow in an HVAC network. First, a filter causes a flow loss whose magnitude
depends on the loading of the filter. Second, a filter removes mass from flow going through the filter as a
function of the filter’s efficiency. Filter losses are evaluated using the filter loading at the start of each time
step. This loss is applied to the upstream duct. The filter loss is computed as a function of the total filter
loading using either a linear ramp or a user defined table. The total loading of the filter is determined by
summing the mass of each species trapped times a weighting factor for that species.

The filter is assumed to remove a fixed fraction (the filter’s efficiency) of the species being trapped by
the filter. Each species can be given its own removal efficiency. Eq. (10.1) for a filter is therefore given as:

uout ρout Aout = uin ρin Ain−∑
j

uin ρin AinYj,inE j = uin ρin Ain

(
1−∑

j
Yj,inE j

)
(10.7)

where j is a species being filtered and E j is its removal efficiency.

10.2.2 Node Losses

Some nodes in the modeled HVAC system will represent items such as tees. Flow through such a node
will result in a flow loss. However, as seen in Eq. (10.6), flow loss terms appear only in the equations for
a duct. This means that losses that are physically associated with a node must be expressed numerically
as equivalent losses in the ducts attached to the node. The losses also need to be applied in a manner that
represents the flow conditions within the node. For example, if a tee has flow into one leg and out of two
legs, it would not make sense to apply the loss to the upstream leg as there would be no way to distinguish
losses due to any changes of the flow splitting in the downstream legs. Loss terms are applied as follows:

1. If there is no flow at the node, then each duct connected to the node is assigned the average of all the
losses for flows to the duct from all other ducts.

2. If there is flow into only one connected duct, then each outflowing duct is assigned the flow loss for flow
from the inlet duct to the outlet duct.

3. If there is flow out of only one connected duct, then each inflowing duct is assigned the flow loss for
flow from the inlet duct to the outlet duct corrected for any change in duct area from inlet to outlet (node
losses are input as a function of the downstream duct area).

4. If there is flow into multiple ducts and out of multiple ducts, then each outgoing duct is given the average
loss from the inflowing ducts weighted by the volume flow.
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10.2.3 Duct Losses

The total flow loss in the duct, K, is the sum of fitting losses in the duct (e.g. elbows, expansion/reduction,
orifice plates), Kminor, plus losses due to wall friction, Kwall. Minor losses are a user input. If a duct roughness
is set, wall friction losses are modeled as follows:

Kwall =
f L
D

(10.8)

where D is the duct diameter. f is determined from the Colebrook equation. However, since this equation
does not have an analytical solution, an approximation by Zigrang and Sylvester is used [112].

1√
f
= −2 log10

(
ε/D
3.7
− 4.518

ReD
log10

(
6.9
ReD

+

(
ε/D
3.7

)1.11
))

(10.9)

where ε is the absolute roughness of the duct.

10.2.4 Heating and Coiling Coils

A duct can contain a heating or cooling coil. These either add or remove heat from the mass flowing in
a duct. This enthalpy change is then added to the duct enthalpy flow at the downstream node prior to
computing the node temperature. Two models are available. The first model is a constant heat model that
adds or removes heat at a fixed rate as long as the coil is operating. The second model is an effectiveness
type heat exchanger model in which four parameters are specified: the enthalpy of the working fluid (cp,fl),
the temperature of the working fluid, (Tfl), the mass flow rate of the working fluid (ṁfl), and the effectiveness
(η). The rate of enthalpy change is then computed as follows:

Tout =
ṁduct cp,duct,in Tduct,in + ṁfl cp,fl Tfl

ṁduct cp,duct,in + ṁfl cp,fl
(10.10)

q̇coil = ṁflcp,fl (Tfl−Tout)η (10.11)

10.3 Leakage

With rare exceptions, walls, floors, and ceilings are not air tight. Gaps around windows and doors and
openings for electrical, mechanical, and other systems provide small flow paths through obstructions. These
flow paths can be modeled as an equivalent HVAC system where each leakage path is a single duct. The
area of the duct is total leakage area and the terminal nodes of the duct can be considered the entire area of
the surfaces defined as participating in that flow path.

10.4 Coupling the HVAC solver to FDS

10.4.1 Boundary Conditions for the HVAC Solver

Prior to updating the HVAC solution, the inlet conditions at each duct node are determined by summing the
mass and energy of the gas cells next to duct node and averaging the pressure. The total mass and energy
along with the average pressure are then used to determine the average temperature.

ρ̄i =

∑
j

ρ j A j

∑
j

A j
; Ȳα,i =

∑
j
Yα, j ρ j A j

∑
j

ρ j A j
; P̄i =

∑
j

Pj A j

∑
j

A j
(10.12)
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h̄i =

∑
j

ρ j A j cp(Tj,Yj)

∑
j

ρ j A j
; T̄i =

h̄i

cp(T̄i,Ȳi)
(10.13)

where i is a duct node and j are the gas cells adjacent to the node.

10.4.2 Boundary Conditions for the FDS Hydrodynamic Solver

For wall cells containing inflow from an HVAC duct that is not leakage flow, the surface temperature, Tw, is
set to the value in the connected duct. If the flow is a leakage flow, then Tw is computed based on the thermal
properties assigned to the surface (see Chapter 7) . The remaining wall boundary conditions are computed
as follows:

ṁ′′α = Yα,d ṁ′′ ; ṁ′′ =
ud ρd Ad

Av
(10.14)

where the subscript d is the attached duct and Av is the total area of the vent (which in the case of leakage
flow is the total area of all surfaces for that leak path).

uw =
ṁ′′

ρw
; ρw =

pW
RTw

(10.15)

Yα,w =
ṁ′′α +

2ρw DYα,gas
δn

2ρw D
δn +uw ρw

(10.16)

The above three equations are solved iteratively with a limit of 20 iterations (typically only one or two
iterations are needed).

For wall cells with outflow to an HVAC duct, the wall boundary conditions are set to gas cell values
except for a leakage flow where the temperature is computed based on the thermal properties assigned to the
surface.
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Appendix A

Nomenclature

Ap droplet/particle surface area
Aαβ pre-exponential factor for solid phase Arrhenius reaction
B emission source term
C sprinkler C-factor; coefficient of natural convection
Cd drag coefficient
Cm momentum accommodation coefficient
Cn Cunningham slip correction factor
Cs Smagorinsky constant (LES); thermal slip coefficient
Ct thermal accommodation coefficient
c solid material specific heat; speed of light in vacuum
cp constant-pressure specific heat
D droplet/particle diameter
Dα diffusion coefficient
Dv,0.5 median volumetric droplet diameter
E activation energy
fb external force vector (excluding gravity)
g acceleration of gravity
g gravity vector, normally (0,0,−g)
H total pressure divided by the density (Bernoulli integral)
Hr,αβ heat of reaction for a solid phase reaction
h heat transfer coefficient; Planck constant
hs,α sensible enthalpy of species α

I radiation intensity per unit of solid angle
Ib radiation blackbody intensity per unit of solid angle
Ib,λ spectral radiation blackbody intensity as function of wavelength per unit of solid angle
Ib,ω spectral radiation blackbody intensity as function of wavenumber per unit of solid angle
k thermal conductivity; suppression decay factor
kB Boltzmann constant
Kn Knudsen number
Kth thermophoretic velocity coefficient
L characteristic length; surface thickness
ṁ′′′b,α mass production rate per unit volume of species α by evaporating droplets/particles
ṁ′′′α mass production rate per unit volume of species α by chemical reactions
ṁ′′w water mass flux
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m′′w water mass per unit area
ns partial reaction order for solid
nO2 partial reaction order for oxygen
Nu Nusselt number
Pr Prandtl number
p pressure
p0 atmospheric pressure profile
pm background pressure of mth pressure zone
p̃ pressure perturbation
q̇′′ heat flux vector
q̇′′′ heat release rate per unit volume
q̇′′r radiative heat flux
q̇′′c convective heat flux
Q̇ total heat release rate
Q̇∗ fire Froude number
R universal gas constant
Re Reynolds number
rp particle/droplet radius
rαβ solid phase reaction rate
RTI Response Time Index of a sprinkler
s unit vector in direction of radiation intensity
Sc Schmidt number
Sh Sherwood number
Sα solid component production rate
T temperature
t time
U integrated radiant intensity; optical pathlength
u = (u,v,w) velocity vector
Wα molecular weight of gas species α

W molecular weight of the gas mixture
We Weber number
x = (x,y,z) position vector
Xα volume fraction of species α

Yα mass fraction of species α

Ȳα mean mass fraction of species α

Ŷα mass fraction of species α in mixed zone of a computation cell
Y ∞

O2
mass fraction of oxygen in the ambient

YF mass fraction of fuel
ys soot yield
Zα species mixture α

Greek Letters

α ratio of gas conductivity to the particle conductivity; integrated band intensity
γ ratio of specific heats; Rosin-Rammler exponent; spectral fine structure parameter of narrow band
∆ LES filter width
∆h heat of combustion
∆hO2 energy released per unit mass oxygen consumed

108



∆h0
f,α heat of formation of species α

δ film thickness; scaling factor of thickness and density
ε dissipation rate; emissivity
κ absorption coefficient; von Karman constant
λ mean free path of gas molecules; wavelength of thermal radiation
µ dynamic viscosity
ν frequency of the thermal radiation
να stoichiometric coefficient, species α

νs yield of solid residue in solid phase reaction
νg,γ yield of gaseous species γ in solid phase reaction
ρ density
τ̄ω mean spectral transmissivity of a narrow band centered in ω

τi j viscous stress tensor
φ porosity
χ shape factor
χr radiative loss fraction
σ Stefan-Boltzmann constant; constant in droplet size distribution; surface tension
σp particle scattering coefficient
σs scattering coefficient
τ+ dimensionless stopping distance
ω wavenumber of thermal radiation
ω = (ωx,ωy,ωz) vorticity vector
Ω solid angle

Subscripts

0 initial value
a air
b bulk phase property; boiling
B Brownian
c convective
d drag
e effective properties
g gas
i jk gas phase cell indices
n band properties
p particle/droplet
p pressure
r radiative
s solid; sensible; soot
w wall
α gas species index
β index of reaction
λ wavelength
ω wavenumber
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Appendix B

A Velocity Divergence Constraint for
Large-Eddy Simulation of Low-Mach Flows

The equations governing the evolution of a low-Mach, variable density fluid—first introduced by Rehm
and Baum in 1978 [9]—are continuity, species concentration (mass fraction), momentum, energy (sensible
enthalpy), and the ideal gas equation of state:

∂ρ

∂ t
+∇ · (ρu) = ṁ′′′b (B.1)

∂ρYα

∂ t
+∇ · (ρYαu) = ∇ · (ρDα∇Yα)+ ṁ′′′α + ṁ′′′b,α (B.2)

∂ρu
∂ t

+∇ · (ρuu) =−∇p̃−∇ · τ +(ρ−ρ0)g (B.3)

∂ρhs

∂ t
+∇ · (ρhsu) =

D p̄
Dt

+ q̇′′′−∇ · q̇′′ (B.4)

ρ =
p̄W
RT

(B.5)

In this appendix, starting from the conservative form of the sensible enthalpy transport equation, we derive
a numerically consistent velocity divergence constraint for use in large-eddy simulation (LES) of low-Mach
flows. The result accounts for numerical transport of mass and energy, which is difficult to eliminate in
relatively coarse, engineering LES calculations when total variation diminishing (TVD) scalar transport
schemes are employed. Without the correction terms derived here, unresolved (numerical) mixing of gas
species with different heat capacities and molecular weights may lead to erroneous mixture temperatures
and ultimately to an imbalance in the energy budget.

B.1 The Divergence Constraint

As mentioned, the present work stems from attempts to understand and correct an energy budget imbalance
that became evident after implementing both temperature-dependent specific heats and TVD scalar trans-
port. One of the revelations of this work has been that the choice of starting point for deriving the diver-
gence constraint naturally leads to two different forms of the divergence expression. While these forms are
mathematically equivalent, they lead to two completely different—and yet completely plausible—numerical
formulations.
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B.1.1 From Continuity

Starting from the continuity equation, we can factor out the velocity divergence leaving the material deriva-
tive of the density:

∇ ·u =− 1
ρ

Dρ

Dt
+

1
ρ

ṁ′′′b (B.6)

Using the ideal gas law and differentiating the equation of state leads to

∇ ·u =

(
1

ρcpT
− 1

p̄

)
Dp̄
Dt

+
1

ρcpT

[
q̇′′′−∇ · q̇′′

]
+

1
ρ

∑
α

(
W
Wα

− hs,α

cpT

)[
∇ · (ρDα∇Yα)+ ṁ′′′α

]

+
1
ρ

∑
α

(
W
Wα

−
∫ T

Tb
cp,α(T ′)dT ′

cpT

)
ṁ′′′b,α (B.7)

B.1.2 From Sensible Enthalpy

Alternatively, we may factor the velocity divergence from the sensible enthalpy transport equation:

∇ ·u =
1

ρhs

[
D
Dt

(p̄−ρhs)+ q̇′′′−∇ · q̇′′
]

(B.8)

From this starting point, (arguably) the natural result for the divergence expression is

∇ ·u =
1

ρcpT
D p̄
Dt
− 1

p̄
∂ p̄
∂ t

+
1

ρcpT

[
q̇′′′−∇ · q̇′′−u ·∇(ρhs)

]
+

1
ρ

∑
α

(
W
Wα

− hs,α

cpT

)[
∇ · (ρDα∇Yα)−u ·∇(ρYα)+ ṁ′′′α

]

+
1
ρ

∑
α

(
W
Wα

−
∫ T

Tb
cp,α(T ′)dT ′

cpT

)
ṁ′′′b,α (B.9)

B.1.3 Comparison

Notice the subtle differences between the first, second, and third lines of (B.7) and (B.9). The first lines
differ by (u ·∇ p̄)/p̄. In (B.9), the second and third lines each contain an extra term accounting for advection
of enthalpy and mass, respectively, u ·∇(ρhs) and u ·∇(ρYα). Using (B.1)-(B.5), it can be shown that (B.7)
and (B.9) are mathematically equivalent (see Section B.4).
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B.2 The Discrete Divergence

The conservative form of the sensible enthalpy transport equation—which derives its name from the flux
divergence form of the mean transport term on the left hand side—is

∂ (ρhs)

∂ t
+ ∇ · (ρhsu)︸ ︷︷ ︸

mean transport

=
Dp̄
Dt

+ q̇′′′−∇ · q̇′′ . (B.10)

This form is called conservative because, by Gauss’s theorem, the integral of the discrete flux divergence
over the domain is equivalent to the surface integral of the flux over the boundary of the domain. For
a periodic domain the integral is zero—flow in must equal flow out. The key to guaranteeing discrete
conservation of sensible enthalpy is to first discretize the mean transport term. Below an overline will denote
a slope-limiting interpolation operator. As discussed in Section B.2.1, this operator is specially designed to
be consistent with flux-limited, total variation diminishing (TVD) transport for the conservative form of the
mean transport term.

Expanding the mean transport term and rearranging (B.10) in terms of the discrete divergence yields

∇ ·u =
1

ρhs

[
−
(

∂ (ρhs)

∂ t
+u ·∇(ρhs)

)
+

D p̄
Dt

+ q̇′′′−∇ · q̇′′
]

. (B.11)

The numerical details of u ·∇(ρhs) are the key to assuring discrete conservation (see Section B.2.1). Math-
ematically, (B.11) is equivalent to (B.8). Numerically, however, (B.11) accounts for the critical details of
the TVD transport scheme.

Most of the complexity in the divergence expression is buried in the time derivative term, ∂ (ρhs)/∂ t.
Using (B.1)-(B.5), it can be shown that (B.11) expands to yield (B.9) (see Section B.3).

B.2.1 Factoring the Discrete Flux Divergence

Below we show the numerical decomposition of the enthalpy flux divergence for cell i in 1D. The operator
δ ( )/δx denotes a central difference. Density ρ and sensible enthalpy hs are stored at cell centers indexed
by i, i+1, etc. Velocity u is stored at the cell face and indexed by i+ 1

2 , etc. Here an overline applied to a
face value (i± 1

2 suffix) denotes a flux limiter, which is basically a special interpolation of the scalar field to
the cell face. The purpose of the flux limiter is to prevent spurious oscillations in the scalar solution. Such
oscillations must be avoided because they may lead to boundedness violations and instability.

In decomposing the flux divergence, our goal is to break the term into two parts as follows:[
δ (ρhsu)

δx

]
i
=

(ρhs)i+ 1
2
ui+ 1

2
− (ρhs)i− 1

2
ui− 1

2

δx

= (ρhs)i
ui+ 1

2
−ui− 1

2

δx︸ ︷︷ ︸
∇ ·u

+
∆i+ 1

2
ui+ 1

2
+∆i− 1

2
ui− 1

2

δx︸ ︷︷ ︸
u ·∇(ρhs)

(B.12)

Here ∆i+ 1
2

represents a limited slope of the scalar data (ρhs in this case) at the face i+ 1
2 . The slope limiters

for cell i are defined such that

(ρhs)i +∆i+ 1
2
= (ρhs)i+ 1

2
(B.13)

(ρhs)i−∆i− 1
2
= (ρhs)i− 1

2
(B.14)

Note that while scalar face values are unique to the face
[
(ρhs)i+ 1

2
= (ρhs)i+1− 1

2

]
, the limited slopes are

not (∆i+ 1
2
6= ∆i+1− 1

2
).
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B.2.2 Example: Pure Upwinding

Suppose all u > 0 in 1D, a wind from left to right. For Godunov’s scheme (first-order upwinding) the limited
slopes would be computed as follows:

∆i+ 1
2
= (ρhs)i+ 1

2
− (ρhs)i

= (ρhs)i− (ρhs)i

= 0 (B.15)

∆i− 1
2
= (ρhs)i− (ρhs)i− 1

2

= (ρhs)i− (ρhs)i−1 (B.16)

The cell-average advection term therefore becomes

u ·∇(ρhs) = ui− 1
2

[
(ρhs)i− (ρhs)i−1

δx

]
(B.17)

B.2.3 Example: Central Differencing

For central differencing the limited slopes would be computed as follows:

∆i+ 1
2
= (ρhs)i+ 1

2
− (ρhs)i

=
1
2
[(ρhs)i +(ρhs)i+1]− (ρhs)i

=
1
2
[(ρhs)i+1− (ρhs)i] (B.18)

∆i− 1
2
= (ρhs)i− (ρhs)i− 1

2

= (ρhs)i−
1
2
[(ρhs)i−1 +(ρhs)i]

=
1
2
[(ρhs)i− (ρhs)i−1] (B.19)

The cell-average advection term therefore becomes

u ·∇(ρhs) =
1
2

ui+ 1
2

[
(ρhs)i+1− (ρhs)i

δx

]
+

1
2

ui− 1
2

[
(ρhs)i− (ρhs)i−1

δx

]
(B.20)

B.2.4 General Implementation: Using Flux Limiters

The examples above are for illustration purposes only. In general, we first compute the flux-limited face val-
ues and obtain the limited slopes from (B.13) and (B.14). The cell-average advection term is then computed
from the second underbrace in (B.12).

B.3 Decomposing the Time Derivative

Using the ideal gas law, the time derivative of the enthalpy can be decomposed as follows:

∂ (ρhs)

∂ t
= ρ

∂hs

∂ t
+hs

∂ρ

∂ t

114



= ρ ∑
α

(
Yαcp,α

∂T
∂ t

+hs,α
∂Yα

∂ t

)
+hs

∂ρ

∂ t

= ρcp
∂T
∂ t

+ρ ∑
α

hs,α
∂Yα

∂ t
+hs

∂ρ

∂ t

= ρcpT
[

1
p̄

∂ p̄
∂ t

+
1

W
∂W
∂ t
− 1

ρ

∂ρ

∂ t

]
+ρ ∑

α

hs,α
∂Yα

∂ t
+hs

∂ρ

∂ t

= ρcpT
[

1
p̄

∂ p̄
∂ t
−∑

α

W
Wα

∂Yα

∂ t
− 1

ρ

∂ρ

∂ t

]
+ρ ∑

α

hs,α
∂Yα

∂ t
+hs

∂ρ

∂ t

=
ρcpT

p̄
∂ p̄
∂ t

+ρ ∑
α

(
hs,α − cpT

W
Wα

)
∂Yα

∂ t
+(hs− cpT )

∂ρ

∂ t
(B.21)

The time derivative of the mass fractions, which originates from the species transport equation, is:

∂Yα

∂ t
=

1
ρ

[
∇ · (ρDα∇Yα)+ ṁ′′′α −Yα

∂ρ

∂ t
−∇ · (ρYαu)

]
(B.22)

Using (B.22) in (B.21) and summing over species to eliminate the density time derivative we obtain

∂ (ρhs)

∂ t
=

ρcpT
p̄

∂ p̄
∂ t

+∑
α

(
hs,α − cpT

W
Wα

)[
∇ · (ρDα∇Yα)+ ṁ′′′α −u ·∇(ρYα)−ρYα∇ ·u

]
(B.23)

Plugging (B.23) into (B.8) yields (almost done)

∇ ·u =
1

ρhs

Dp̄
Dt
−

cpT
hs

1
p̄

∂ p̄
∂ t

+
1

ρhs

[
q̇′′′−∇ · q̇′′−u ·∇(ρhs)

]
+

1
ρhs

∑
α

(
cpT

W
Wα

−hs,α

)[
∇ · (ρDα∇Yα)−u ·∇(ρYα)−ρYα∇ ·u

]
+

1
ρhs

∑
α

(
cpT

W
Wα

−hs,α

)
ṁ′′′α (B.24)

∇ ·u+
1

ρhs
∑
α

(
cpT

W
Wα

−hs,α

)
ρYα∇ ·u =

1
ρhs

D p̄
Dt
−

cpT
hs

1
p̄

∂ p̄
∂ t

+
1

ρhs

[
q̇′′′−∇ · q̇′′−u ·∇(ρhs)

]
+

1
ρhs

∑
α

(
cpT

W
Wα

−hs,α

)[
∇ · (ρDα∇Yα)−u ·∇(ρYα)+ ṁ′′′α

]
(B.25)

∇ ·u+

(
cpT
hs
−1
)

∇ ·u =
1

ρhs

D p̄
Dt
−

cpT
hs

1
p̄

∂ p̄
∂ t

+
1

ρhs

[
q̇′′′−∇ · q̇′′−u ·∇(ρhs)

]
+

1
ρhs

∑
α

(
cpT

W
Wα

−hs,α

)[
∇ · (ρDα∇Yα)−u ·∇(ρYα)+ ṁ′′′α

]
(B.26)
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Finally... (compare with (B.9))

∇ ·u =
1

ρcpT
D p̄
Dt
− 1

p̄
∂ p̄
∂ t

+
1

ρcpT

[
q̇′′′−∇ · q̇′′−u ·∇(ρhs)

]
+

1
ρ

∑
α

(
W
Wα

− hs,α

cpT

)[
∇ · (ρDα∇Yα)−u ·∇(ρYα)+ ṁ′′′α

]
(B.27)

B.4 Equivalence between Divergence Expressions

The equivalence between (B.7) and (B.9) is apparent based on the following:

− 1
ρcpT

u ·∇(ρhs)−
1
ρ

∑
α

(
W
Wα

− hs,α

cpT

)
u ·∇(ρYα)

=− 1
ρcpT

[ρu ·∇hs +hsu ·∇ρ]− 1
ρ

∑
α

(
W
Wα

− hs,α

cpT

)
[ρu ·∇Yα +Yαu ·∇ρ]

=− 1
cpT

u ·∑
α

[Yα∇hs,α +hs,α∇Yα ]−
1
ρ

u ·∇ρ−∑
α

(
W
Wα

− hs,α

cpT

)
u ·∇Yα

=− 1
cpT

u ·∑
α

Yα∇hs,α −
1
ρ

u ·∇ρ−∑
α

W
Wα

u ·∇Yα

=− 1
cpT

u ·∑
α

Yαcp,α∇T − 1
ρ

u ·∇ρ−u ·∑
α

W∇(Yα/Wα)

=−u ·
[

1
T

∇T +
1
ρ

∇ρ +W∇(1/W )

]
=−1

p̄
u ·∇p̄ (B.28)

B.5 Simplifications for Constant Specific Heat

Recall that for an ideal gas we may write

cp,α = cv,α +R/Wα =
R

Wα

(
γα

γα −1

)
, (B.29)

where cp,α is the specific heat of α at constant pressure, cv,α is the specific heat at constant volume, and
γα = cp,α/cv,α . Commonly, the ratio of specific heats is approximated to be constant, and for fire calculations
typically the value for air is chosen, γ ≈ 1.4. In this case, the sensible enthalpy becomes

ρhs = ρcpT = ρT ∑
α

Yαcp,α = ρRT
(

γ

γ−1

)
∑
α

Yα

Wα

= ρ
RT
W

(
γ

γ−1

)
= p̄

(
γ

γ−1

)
(B.30)

Therefore, if p̄ is constant and uniform then ρhs is constant and uniform. Consequently, ∂ (ρhs)/∂ t = 0 and
∇(ρhs) = 0, so we require no corrections to the divergence expression. This improves the speed of the code
since these divergence corrections are rather expensive. To employ this simplification, the user enters both
CONSTANT_SPECIFIC_HEAT_RATIO=.TRUE. and STRATIFICATION=.FALSE. on the MISC line of the
input file.
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Appendix C

Absorption Coefficients of Gaseous Fuels

For the calculation of the gray or band-mean absorption coefficients, κn, a narrow-band model, RAD-
CAL [17], has been implemented in FDS. RADCAL computes the spectral properties of the radiation par-
ticipating species at discrete values of the spectrum (expressed either in wavenumber ω or in wavelength
λ ) and temperature, and returns two alternative mean absorption coefficients for each spectral band, n. The
first coefficient is the Planck mean coefficient [113]

κn(P,T ) =
π

σT 4

∫
λmax

λmin

Ib,λ (T )∑
i

100κ̄i(λ ,T )Pi dλ (C.1)

where λ is the wavelength, expressed in units of µm, Pi is the partial pressure of participating species i, in
units of atm, and κ̄i is the spectral absorption coefficient of participating species i, in units of atm−1cm−1.
Note that the temperature used in the calculation of κn is the local gas temperature; thus, κn(P,T ) is a
function of the gas phase temperature and partial pressure and is independent of the pathlength. Its units are
1/m. The factor 100 is introduced to convert κ̄i from atm−1cm−1 to atm−1m−1

The source term Ib,λ (T ) is the Planck blackbody distribution law which expresses the equilibrium rate
of radiant energy emitted from a blackbody at temperature, T , and as function of wavelength, λ . Formally,
the monochromatic blackbody radiant energy emitted at a wavelength λ is given by [114]

Ib,λ (T )dλ =
2hc2 λ−5

exp
(

hc
kB λ T

)
−1

dλ (C.2)

Here, h is the Planck constant (6.626×10−34 J·s), c is the speed of light in vacuum (2.998×108 m/s), and
kB is the Boltzmann constant (1.381×10−23 J/K) [115]. Ib,λ (T ) is in units of W/m2/str/m; the wavelengths
are converted from µm to m.

The second coefficient is the so-called path mean or effective absorption coefficient, κe,n(T ) which is
defined according to the following equation∫

λmax

λmin

I(λ ,L,T,Trad) dλ =
σ

π

[(
1− e−κe,n(T )L

)
T 4 + e−κe,n(T )L T 4

rad

]
(C.3)

where L is the path length and Trad is the effective temperature of flame radiation. RADCAL calculates the
left hand integral by calculating the intensity leaving a uniform gas layer of equivalent thickness L, bounded
by a black wall at temperature Trad, for a large number of narrow spectral bands. By default in FDS, the
pathlength, L, is five times the characteristic cell size of the simulation, limited by a maximum value of
10 m. It can also be specified by the user. If T = Trad the intensity does not depend on κe,n. The value
κe,n(Trad) is therefore interpolated from the neighbouring temperatures.
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In cases with only one band (N=1), the smaller of the two absorption coefficients is used:

κn = min
(

κn(P,T ),κe,n(T )
)

(C.4)

If N > 1 or L = 0, κn = κn(P,T ). Note that the spectral data within RADCAL are used whenever the gas
mixture contains water vapor, fuel or combustion products, regardless of the number of radiation bands N.

Note on wavenumber, wavelength, and frequency: some confusion might arise when dealing with the
various quantities describing the wave nature of radiation. These quantities are wavenumber ω , wavelength
λ , and frequency denoted here ν . Most users may be familiar with the frequency ν , in units of hertz, Hz,
representing the number of cycles per second. While this unit is preferred for radiation waves of low energy
such as radio waves, wavelength and wavenumber are preferred for waves of higher energy. Wavenumber
and wavelength are related to frequency through [114]

λ = c/ν and ω = ν/c (C.5)

where c is the speed of light in a vacuum. The wavelength, λ , represents the distance traveled by the wave
during one cycle, assuming it travels at the speed of light in a vacuum. Its units are commonly expressed in
µm. Wavenumber, ω , is the reciprocal of the wavelength. It represents the number of cycles per unit length.
In most infrared spectroscopic work, it is expressed in units of cm−1. This is the unit used in the sections
below. One can easily switch from wavenumber in units of cm−1 to wavelength in units of µm using the
relation

λ µm = 10000/ω cm−1 (C.6)

Finally, the user who wishes to express the Planck blackbody distribution law as a function of wavenumber
should take caution when performing the change of variables. One should start by expressing that the radiant
energy emitted at a wavelength λ is the same as the radiant energy emitted at the corresponding wavenumber
ω [113]

Ib,λ (T )dλ =−Ib,ω(T )dω (C.7)

the negative sign is introduced because ω is the reciprocal of λ . Since λ = 1/ω , it comes

dλ

dω
=− 1

ω2 (C.8)

Equation C.7, can be rewritten using Eq. C.2 as

Ib,ω(T )dω =
2hc2 ω3

exp
(

hcω

kB T

)
−1

dω (C.9)

Ib,ω(T ) is in units of W/m/str/m−1; the wavenumbers are converted from cm−1 to m−1. The user who
wishes to analyze the fuel bands presented below (given in wavenumber) with the Planck blackbody distri-
bution law should use Eq. C.9 but should NOT use Eq. C.2 with λ = 1/ω .

A combination of molecular models and data tables are used to compute the spectral radiative properties
of the radiation participating species. The original version of RADCAL includes spectral properties of
CO2, H2O, CO, and CH4 that are either modeled through quantitative molecular spectroscopy derivations
or tabulated from the fitting of experimental data into appropriate statistical narrow band models [17]. The
original RADCAL data have been supplemented with new tabulated experimental data for the following
fuels:

• Ethylene: C2H4
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• Ethane: C2H6

• Propylene: C3H6

• Propane: C3H8

• Toluene: C7H8

• n-Heptane: C7H16

• Methanol: CH3OH

• Methyl Methacrylate: C5H8O2

These new data have been obtained through FTIR measurements for wavenumbers between 700 cm−1 and
4000 cm−1 [116]. A useful quantity to compare the relative importance of the different IR bands is provided
by the integrated band intensity, αi, defined for the ith participating species as [117]:

αi(T ) =
∫

ωmax

ωmin

κ̄i(ω
′,T ) dω

′ (C.10)

whose units are atm−1cm−2. The value of the spectral absorption coefficient, κ̄i, is averaged over a narrow
band whose spectral width, ∆ω , varies from 5 cm−1 for ω < 1100 cm−1, to 25 cm−1 for 1100 cm−1 ≤ ω <
5000 cm−1, and to 50 cm−1 for 5000 cm−1 ≤ ω .

The subsections below briefly describe the molecular bands where the species are active for each of
the gas-phase radiative species, and provide for most of them the integrated band intensity of their most
important bands at the indicated temperature. Outside these bands, the species are transparent. At the
start of a simulation, the absorption coefficients are calculated using RADCAL and then tabulated as a
function of species concentration and temperature. During the simulation, the local absorption coefficient
is interpolated from the table of values. The contributions of individual species are summed to the the total
absorption coefficient.

Carbon Dioxide: CO2

Carbon dioxide is a linear molecule and has four vibrational modes, but only two fundamental IR vibration
frequencies [118]. It has five distinct bands that are included in RADCAL, see Table C.1. The strongest

Table C.1: Spectral bands of CO2 included in RADCAL.

Band # Bounds (cm−1) Method
1 500 880 tabulated
2 880 1100 modeled
3 1975 2475 modeled
4 3050 3800 modeled
5 4550 5275 modeled

band in the CO2 spectrum is Band 3. At 300 K, it has an integrated band intensity of 2963 atm−1cm−2. The
tabulated data were obtained from experiments with temperatures ranging from 300 K to 2400 K using the
Goody statistical narrow band model.
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Carbon Monoxide: CO

Carbon Monoxide is a diatomic molecule and as such, it has only one vibrational mode [118]. RADCAL
includes one distinct band, see Table C.2. It corresponds to the stretching of the triple bond C ≡ O. The

Table C.2: Spectral bands of CO included in RADCAL.

Band # Bounds (cm−1) Method
1 1600 2400 modeled

first overtone (centered at ω ≈ 4260 cm−1) is not accounted for; its integrated band intensity is negligible
at standard temperature and pressure. At 295 K, the integrated band intensity of Band 1 is 260 atm−1cm−2.
The statistical narrow band model associated with CO is the Goody model. Recommended temperatures of
use range from 295 K to 2500 K.

Water Vapor: H2O

Due to the non-linearity of its molecular structure, the IR spectrum of water vapor is complex and broad
[118]. In RADCAL, water vapor spectrum from 50 cm−1 to 9300 cm−1 is considered. Data in RADCAL are
provided by Ludwig et al. [51]. Experimental data have been fitted using the statistical Goody narrow band
model. The strongest bands at standard temperature and pressure are located in the ranges [50−2100] cm−1:
α = 300 atm−1cm−2, and [3000−4000] cm−1: α = 220 atm−1cm−2.

Methane: CH4

Methane is a spherical top molecule of tetrahedral shape with the carbon atom occupying the center of
the tetrahedron [118]. It belongs to the point group Td . The methane IR spectrum is the result of the
vibration-rotation modes of the C−H groups. It has nine vibrational modes, but due to its symmetry, this
translates into only two distinct IR active fundamental vibration frequencies. In RADCAL, the methane IR
spectrum is divided into three distinct bands (fundamentals + degenerates), see Table C.3. The strongest

Table C.3: Spectral bands of CH4 included in RADCAL.

Band # Bounds (cm−1) Method Assignment α(T = 296 K) (atm−1cm−2)
1 1150 1600 tabulated C−H Bend 237
2 2700 3250 tabulated C−H Stretch 212
3 3400 5000 modeled C−H Stretch

bands are Bands 1 and 2 which at standard temperature and pressure have an integrated band intensity of
237 atm−1cm−2 and 212 atm−1cm−2, respectively. The tabulated data were obtained from high resolution
FTIR experiments with temperatures varying from 300 K to 1400 K [116]. The spectral absorption coef-
ficients were obtained assuming the FTIR measurements to be in the weak line regime and applying the
Beer-Lambert Law to the experimental spectral transmissivity.

Ethylene: C2H4

Ethylene is a molecule with a plane symmetrical form and belongs to the point group D2h [118]. The
ethylene IR spectrum is the result of the vibration-rotation modes of the C = C, CH, and CH2 groups. It

120



has 12 vibrational modes. In RADCAL, its IR spectrum is divided into four distinct bands, see Table C.4.
Band 1 is the strongest absorbing band. All the ethylene IR spectral absorption data were obtained from high

Table C.4: Spectral bands of C2H4 included in RADCAL.

Band # Bounds (cm−1) Method Assignment α(T = 296 K) (atm−1cm−2)
1 780 1250 tabulated CH2 Bend 366
2 1300 1600 tabulated CH2 Bend 43
3 1750 2075 tabulated C = C Stretch 20
4 2800 3400 tabulated C−H Stretch 183

resolution FTIR experiments with temperatures varying from 296 K to 801 K [116]. The spectral absorption
coefficients were obtained by fitting the experimental spectral transmissivity of a homogeneous column of
isothermal ethylene with a total pressure of 1 atm using the Goody model.

Ethane: C2H6

Ethane has a three-fold axis of symmetry and belongs to the point group D3d [118]. The ethane IR spectrum
is the result of the vibration-rotation modes of the C−C, CH, and CH2 groups. It has 18 vibrational modes;
its IR spectrum is divided into three distinct bands, see Table C.5. Band 3 corresponds to the stretching of

Table C.5: Spectral bands of C2H6 included in RADCAL.

Band # Bounds (cm−1) Method Assignment α(T = 296 K) (atm−1cm−2)
1 730 1095 tabulated CH3 Rock 29
2 1250 1700 tabulated CH Bend 64
3 2550 3375 tabulated CH Stretch 761

CH and is the strongest absorbing band. At standard temperature and pressure, its integrated band intensity
is more than 10 times the value of Band 2, and more than 20 times the value of Band 1. All the ethane IR
spectral absorption data were obtained from high resolution FTIR experiments with temperatures varying
from 296 K to 1000 K [116]. The spectral absorption coefficients were obtained by fitting the experimental
spectral transmissivity of a homogeneous column of isothermal ethane with a total pressure of 1 atm using
the Elsasser model.

Propylene: C3H6

Propylene has only one plane of symmetry and belongs to the point group Cs [118]. The propylene IR
spectrum is the result of the vibration-rotation modes of the C−C, C = C, CH, CH2, and CH3 groups.
It has 21 vibrational modes; its IR spectrum is divided into three distinct bands, see Table C.6. Band 3
corresponds to the stretching of CH and is the strongest of all Propylene absorbing bands. All the propylene
IR spectral absorption data were obtained from high resolution FTIR experiments with temperatures varying
from 296 K to 1003 K [116]. The spectral absorption coefficients were obtained by fitting the experimental
spectral transmissivity of a homogeneous column of isothermal propylene with a total pressure of 1 atm
using the Goody model.
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Table C.6: Spectral bands of C3H6 included in RADCAL.

Band # Bounds (cm−1) Method Assignment α(T = 296 K) (atm−1cm−2)
1 775 1150 tabulated C−C Stretch, CH3 Rock 296
2 1225 1975 tabulated C = C Stretch, CH Bend 271
3 2650 3275 tabulated CH Stretch 509

Propane: C3H8

Propane has two planes of symmetry and two axes of rotation. It belongs to the point group C2v [118]. The
propane IR spectrum is the result of the vibration-rotation modes of the C−C, CH2, CH3 groups. It has 27
vibrational modes; its IR spectrum is divided into two distinct bands, see Table C.7. Band 2 corresponds to

Table C.7: Spectral bands of C3H8 included in RADCAL.

Band # Bounds (cm−1) Method Assignment α(T = 295 K) (atm−1cm−2)
1 1175 1675 tabulated CH3 Bending 121
2 2550 3375 tabulated CH3,CH2 Stretch 1186

the stretching of CH3 and CH2 and is the strongest of all propane absorbing bands. For similar conditions,
Band 1 has a much lower integrated band intensity. All the propane IR spectral absorption data were obtained
from high resolution FTIR experiments with temperatures varying from 295 K to 1009 K [116]. The spectral
absorption coefficients were obtained by fitting the experimental spectral transmissivity of a homogeneous
column of isothermal propane with a total pressure of 1 atm using the Goody model.

Toluene: C7H8

Toluene has only one plane of symmetry. It belongs to the point group Cs [119]. The toluene IR spectrum is
the result of the vibration-rotation modes of the C = C, CH, and CH3 groups. It has 39 vibrational modes.
For ease of modeling using statistical narrow band models, its IR spectrum has been divided into five distinct
bands, see Table C.8. Band 5 corresponds to the stretching of CH3 and CH, and it is the strongest absorbing

Table C.8: Spectral bands of C7H8 included in RADCAL.

Band # Bounds (cm−1) Method Assignment α(T = 300 K) (atm−1cm−2)
1 700 805 tabulated CH Bending 237
2 975 1175 tabulated CH Bending 40
3 1275 1650 tabulated CH3 Bending 166
4 1650 2075 tabulated C = C Stretching 101
5 2675 3225 tabulated CH3, CH Stretching 510

band. All the toluene IR spectral absorption data were obtained from high resolution FTIR experiments
with temperatures varying from 300 K to 795 K [116]. The spectral absorption coefficients were obtained
by fitting the experimental spectral transmissivity of a homogeneous column of isothermal toluene with a
total pressure of 1 atm using the Goody model.
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n-Heptane: C7H16

n-heptane has two planes of symmetry and two axes of rotation. It belongs to the point group C2v [119].
The n-heptane IR spectrum results from the vibration-rotation modes of the C−C, CH2, and CH3 groups.
It has 63 vibrational modes. For ease of modeling using statistical narrow band models, its IR spectrum has
been divided into two distinct bands, see Table C.9. Band 2 corresponds to the stretching of CH3 and CH2

Table C.9: Spectral bands of C7H16 included in RADCAL.

Band # Bounds (cm−1) Method Assignment α(T = 293 K) (atm−1cm−2)
1 1100 1800 tabulated CH2,CH3 Bending 298
2 2250 3275 tabulated CH2,CH3 Stretching 3055

groups, and is the strongest absorbing band. All the n-heptane IR spectral absorption data were obtained
from high resolution FTIR experiments with temperatures varying from 293 K to 794 K [116]. The spectral
absorption coefficients were obtained by fitting the experimental spectral transmissivity of a homogeneous
column of isothermal n-heptane with a total pressure of 1 atm using the Goody model.

Methanol: CH3OH

Methanol has only one plane of symmetry. It belongs to the point group Cs [118]. The methanol IR spectrum
results from the vibration-rotation modes of the C−O, OH, and CH3 groups. It has 12 vibrational modes.
For ease of modeling using statistical narrow band models, its IR spectrum has been divided into four distinct
bands, see Table C.10. Band 3 corresponds to the stretching of the CH3 group and is the strongest absorbing

Table C.10: Spectral bands of CH3OH included in RADCAL.

Band # Bounds (cm−1) Method Assignment α(T = 293 K) (atm−1cm−2)
1 825 1125 tabulated C−O Stretching 593
2 1125 1700 tabulated CH3,OH Bending 197
3 2600 3225 tabulated CH3 Stretching 684
4 3525 3850 tabulated OH Stretching 112

band. All the methanol IR spectral absorption data were obtained from high resolution FTIR experiments
with temperatures varying from 293 K to 804 K [116]. The spectral absorption coefficients were obtained
by fitting the experimental spectral transmissivity of a homogeneous column of isothermal methanol with a
total pressure of 1 atm using the Goody model.

Methyl Methacrylate: C5H8O2

Methyl Methacrylate or MMA has the most complex IR spectrum of all the fuels presented above. With 15
atoms, it has 39 vibrational modes [119]. The MMA IR spectrum results from the vibration-rotation modes
of the C−O, C = O, C = C, CH2, and CH3 groups. For ease of modeling using statistical narrow band
models, its IR spectrum has been divided into six distinct bands, see Table C.11. Band 3 corresponds to
the stretching of the C−O group and has the highest integrated band intensity. All the MMA IR spectral
absorption data were obtained from high resolution FTIR experiments with temperatures varying from 396 K
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Table C.11: Spectral bands of C5H8O2 included in RADCAL.

Band # Bounds (cm−1) Method Assignment α(T = 396 K) (atm−1cm−2)
1 750 875 tabulated CH2 Bending 42
2 875 1050 tabulated CH2 Bending 131
3 1050 1250 tabulated C−O Stretching 800
4 1250 1550 tabulated CH3 Bending 490
5 1550 1975 tabulated C = C,C = O Stretching 538
6 2650 3275 tabulated CH2,CH3 Stretching 294

to 803 K [116]. The spectral absorption coefficients were obtained by fitting the experimental spectral
transmissivity of a homogeneous column of isothermal MMA with a total pressure of 1 atm using the Goody
model.

Statistical Narrow Band Models

This section briefly describes the statistical models used to obtain most of the tabulated species IR spectral
absorption coefficients at different temperatures, κ̄i(ω,T ). Narrow band models are used in lieu of line-by-
line models to represent the IR spectra of radiating species in engineering applications. In the narrow band
approach, the whole spectrum is divided into small spectral bands (typically several cm−1), and different
statistical approaches are used to compute the average radiative properties over these narrow bands. Two
main models are presented below: the Elsasser model and the Goody model. Both models assume Lorentz
lines.

The Elsasser model assumes all the lines to have the same shape, same strength, and to be equally
spaced from each other. In this model, the spectral transmissivity, τ̄ω , of a homogeneous isothermal column
filled with only some gas of species i, at a total pressure PT and with an optical pathlength U = PiL (L being
the column physical length and Pi the ith participating radiating species partial pressure), is given by the
expression [120]:

τ̄ω = 1− erf


√

π κ̄iU√
1+

π κ̄iU
4 γ̄i PT

 (C.11)

where γ̄i is the spectral fine structure parameter of the narrow band. Its units are in atm−1. κ̄i is the spectral
absorption coefficient of the narrow band. Its units are in atm−1cm−1. The Goody model assumes all the
lines to have the same shape, but to be randomly spaced within the narrow band, and their line strength
follows an exponential distribution. For this model, the spectral transmissivity is given by the expression
[120]:

τ̄ω = exp

− κ̄iU√
1+

κ̄iU
4 γ̄i PT

 (C.12)

For both models, the two narrow band spectral quantities of the ith species (κ̄i and γ̄i) are obtained either
from line-by-line calculations or by fitting experimental data.
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Note: For all the tabulated data, a linear interpolation of κ̄i and γ̄i in temperature and/or in wavenumber
is performed by RADCAL when necessary. If the temperature sought is out of the tabulated data range, then
the data at the nearest temperature are used.
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Appendix D

A Simple Model of Flame Extinction

Frederick W. Mowrer, Department of Fire Protection Engineering, University of Maryland

A diffusion flame immersed in a vitiated atmosphere will extinguish before consuming all the available
oxygen from the atmosphere. The classic example of this behavior is a candle burning within an inverted jar.
This same concept has been applied within FDS to determine the conditions under which the local ambient
oxygen concentration will no longer support a diffusion flame. In this appendix, the critical adiabatic flame
temperature concept is used to estimate the local ambient oxygen concentration at which extinction will
occur.

Consider a control volume characterized by a bulk temperature, Tm, a mass, m, an average specific heat,
cp, and an oxygen mass fraction, YO2 . Complete combustion of the oxygen within the control volume would
release a quantity of energy given by:

Q = mŶO2

(
∆H
rO2

)
(D.1)

where ∆H/rO2 has a relatively constant value of approximately 13100 kJ/kg for most fuels of interest for fire
applications.1 Under adiabatic conditions, the energy released by combustion of the available oxygen within
the control volume would raise the bulk temperature of the gases within the control volume by an amount
equal to:

Q = mcp (Tf −Tm) (D.2)

The average specific heat of the gases within the control volume can be calculated based on the composition
of the combustion products as:

cp =
1

(Tf −Tm)
∑
α

∫ Tf

Tm

cp,α(T )dT (D.3)

To simplify the analysis, the combustion products are assumed to have an average specific heat over the
temperature range of interest. The relationship between the oxygen mass fraction within the control volume
and the adiabatic temperature rise of the control volume is evaluated by equating Eqs. (D.1) and (D.2):

ŶO2,lim =
cp(Tf −Tm)

∆H/rO2

(D.4)

If ŶO2 < ŶO2,lim then combustion is not allowed and ∆ŶF is set to 0.
As an example, the critical adiabatic flame temperature can be assumed to have a constant value of

approximately 1600 K for hydrocarbon diffusion flames, as suggested by Beyler2. The combustion products
1C. Huggett, “Estimation of the Rate of Heat Release by Means of Oxygen Consumption,” Fire and Materials, Vol. 12, pp. 61-

65, 1980.
2C. Beyler, “Flammability Limits of Premixed and Diffusion Flames,” SFPE Handbook of Fire Protection Engineering (3rd

Ed.), National Fire Protection Association, Quincy, MA, 2003.
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can have an average specific heat of 1.2 kJ/(kg ·K) which is a value similar to that of nitrogen, the primary
component of the products. Then, the relationship between the limiting oxygen mass fraction and the bulk
temperature of a control volume is given by:

ŶO2,lim =
cp(TCFT −Tm)

∆H/rO2

≈ 1.2(1600−Tm)

13100
(D.5)

For a control volume at a temperature of 300 K, i.e., near room temperature, the limiting oxygen mass
fraction would evaluate to ŶO2,lim = 0.12. This value is consistent with the measurements of Morehart,
Zukoski and Kubota3 who measured the oxygen concentration at extinction of flames by dilution of air
with combustion products. They found that flames self-extinguished at oxygen concentrations of 12.4 % to
14.3 %. Note that their results are expressed as volume, not mass, fractions. Beyler’s chapter in the SFPE
Handbook references other researchers who measured oxygen concentrations at extinction ranging from
12 % to 15 %.

3Morehart, J., Zukoski, E., and Kubota, T., “Characteristics of Large Diffusion Flames Burning in a Vitiated Atmosphere,” Third
International Symposium on Fire Safety Science, Elsevier Science Publishers, pp. 575-583, 1991.
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Appendix E

Numerical Methods for Integration of
Complex Chemistry

To solve the system of ordinary differential equations used for complex chemistry (e.g., multi-step reac-
tions, reversible reactions), FDS uses a second-order Runge-Kutta (RK2) scheme as the foundation for its
numerical integrator. As discussed below, the scheme is augmented with Richardson extrapolation, which
increases the accuracy to fourth-order and provides a means of error control. The general procedure of using
an explicit integration scheme with an error controller to maintain stability and speed is similar to that of
Mott and Oran [121].

Our goal is to integrate the ODE
dY
dt

= f (Y ) (E.1)

where f (Y ) represents a reaction rate law and Y is a species mass fraction (temperature dependence of the
rate law is frozen at the initial condition). The total time interval is the FDS time step, δ t, and the iteration
substep is ∆t. The scheme is given by

Y ∗ = Y k +∆tk f (Y k) (E.2)

Y k+1 =
1
2
(Y k +Y ∗+∆tk f (Y ∗)) (E.3)

Here k is the iteration index. The number of sub-time intervals is determined by an error controller, as
described below. This second-order scheme is an improvement upon the first-order explicit scheme used for
simple chemistry. To maintain stability for stiff problems, however, an intractable number of time steps may
be required.

Richardson Extrapolation

To overcome this issue, we use Richardson extrapolation. Richardson extrapolation increases the order
of accuracy and provides a means of error control. Suppose you have an exact solution A represented
by a numerical approximation using the interval h such that the error, A−A(h), can be represented by a
polynomial expansion of h. For two different intervals h and h/2 we may write

A1 = A(h)+a1(h)+a2(h)2 +O(h3)︸ ︷︷ ︸
O(h)

(E.4)

A2 = A
(

h
2

)
+a1

(
h
2

)
+a2

(
h
2

)2

+O(h3)︸ ︷︷ ︸
O(h)

(E.5)
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Here the subscript on A represents subdivisions of the time step h, where A1 takes h/1 steps, A2 takes h/2
steps, and so on. The a1 terms can be eliminated by subtracting Eq. (E.4) from two times Eq. (E.5):

A = 2A2−A1 = 2A
(

h
2

)
−A(h)+a2

(
h
2

)2

+O(h3)︸ ︷︷ ︸
O(h2)

(E.6)

which results in a solution with a higher order of error.
This same technique is applied to the second-order Runge-Kutta scheme with three sub-intervals: h,

h/2, and h/4. Because the RK2 scheme was initially second-order, the three-step Richardson extrapolation
gives a fourth-order solution [122]:

A =
4A4−A2

3
+O(h4) (E.7)

In Eq. (E.7), A represents the time updated value of the species concentrations in the mixed reactor zone,
Ŷα , as found in Eq. (5.38).

Error Control

In addition to increasing the order of the error in the numerical scheme, Richardson extrapolation also
provides an estimate of the error value. This estimate is calculated via a Taylor expansion:

error ≈ 1
15

(
4A4−A2

3
− 4A2−A1

3

)
(E.8)

The time step (∆tnew) required to maintain the specified/acceptable error (err_tol) can be calculated by using
the local error (error), the current time step (∆t), and the order of error within the numerical integration
scheme, in this case fourth-order:

∆tnew = ∆t
(

err_tol
error

)1/4

(E.9)

Equation (E.9) indicates that if the error estimate is large relative to the tolerance, then the new time step
decreases; whereas if the error is small, then the new time step increases. This dynamic time stepping
scheme improves computational efficiency because it allows the integrator to take the largest time step
possible bounded by either the error tolerance or the global simulation time step, thus minimizing the total
number of integration steps required.

Maintaining Boundedness

For an arbitrary reaction rate and time step the forward integration may lead to unbounded species mass
fractions. To avoid this issue, we use a method which limits a sub-time step based on the time it takes
the limiting species to go out of bounds (see Kahaner et al. [123]). That substep is taken, then the right-
hand-sides of the ODEs are recomputed with the new concentrations. This process is repeated until either all
reaction rates are zero or the time has reached the total LES time step. So-called “infinitely fast” reactions are
treated as second-order reactions (assuming two reactants) with zero activation energy and large Arrhenius
constants. This method maintains the proper reactant ratios in the case of multiple infinitely fast reactions.

A Total Variation Scheme for Detecting Equilibrium

The stiffness associated with a flame front is handled by the error controller and variable time stepping
discussed above. The scheme discussed in this section automatically detects chemical equilibrium, the
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1

Figure E.1: Illustration of a quantity fluctuating between 0 and 1 about a fixed value.

explicit integration of which is also a stiff problem. Even with error control, the numerical solution may
exhibit numerical fluctuations between the bounds of the error tolerance. This is an undesirable condition
which often occurs in cases with competing or reversible reactions.

If the values are fluctuating around a fixed value bounded by the error tolerance, the integrator is doing
extra work by continuing to calculate every fluctuation within a time step. To minimize the computational
expense, a total variation (TV) scheme has been developed. This scheme examines the differences in species
mass fractions at four consecutive sub-time steps. Within this four point stencil, there are three differences
for each species mass fraction. The TV scheme compares the absolute value of the sum of the differences
to the sum of the absolute values of the differences. For a monotonic function, the following condition must
hold:

4

∑
i=1
|Y (i+1)−Y (i)|= |

4

∑
i=1

(Y (i+1)−Y (i))| (E.10)

The reader unfamiliar with the concept of “data variation” should stop and think about this for a moment.
It says that, regardless of other complexities, the monotonicity constraint (no fluctuations) is sufficient to
guarantee the condition stated in Eq. (E.10). The corollary is that if Eq. (E.10) does not hold, then we are
guaranteed to have some level of fluctuation.

The condition which corresponds to the extreme case of repeating fluctuations between the error toler-
ance bounds for our four point stencil is

4

∑
i=1
|Y (i+1)−Y (i)|= 3 |

4

∑
i=1

(Y (i+1)−Y (i))| (E.11)

This is illustrated in Fig. E.1, which shows a quantity fluctuating between 0 and 1 about a fixed point. We
can compare the sum of the absolute value of the differences between the four points,

4

∑
i=1
|Y (i+1)−Y (i)|= |1−0|+ |0−1|+ |1−0|= 3 (E.12)

to the absolute value of the sum of the differences,

|
4

∑
i=1

(Y (i+1)−Y (i))|= |(1−0)+(0−1)+(1−0)|= 1 (E.13)
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The ratio of Eq. (E.12) and Eq. (E.13) is 3, which indicates that this data is fluctuating. For the implemen-
tation of this scheme in FDS, instead of comparing directly to 3, we use 2.9 because floating point division
might not return a value of exactly 3. If fluctuations have been identified, then the values at the fourth point
in the stencil are frozen and become the final values at the end of an integration time step. This prevents un-
necessary sub-time steps being taken by the integrator. Because the error controller is bounding the solution,
any one of the values within the stencil is also within the error tolerance and is therefore acceptable.
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Appendix F

The Unmixed Fraction

In Sec. 5.2.6, “A Simple Subgrid Mixing Environment”, we present the evolution equation for an important
variable, the unmixed fraction, ζ , in the batch reactor model for turbulent combustion. This appendix shows
the development of that equation.

Moments of the PDF Transport Equation

As discussed by Pope [15], the PDF (5.23) evolves by the Fokker-Planck equation:

∂ f
∂ t

=− ∂

∂ψα

(
f
〈

∂Yα

∂ t

∣∣∣∣ψα

〉)
. (F.1)

The term on the right in angled brackets is a conditional mean. Here it is modeled using a variant of IEM
[47] which we call ‘interaction by exchange with the mixed mean’ or IEMM. When including chemical
reaction, the conditional mean is modeled by〈

∂Yα

∂ t

∣∣∣∣ψα

〉
=

1
τmix

(Ŷα −ψα)+
dŶα

dt
. (F.2)

Using (F.2), the zeroth moment of (F.1) yields (5.29). The zeroth and first moments of (F.1) combine to
yield the model for the chemical source term (5.30), once multiplied by density.

Derivation of First Moment Equation

∫
ψβ

[
∂ f
∂ t

=− ∂

∂ψα

(
f
〈

∂Yα

∂ t

∣∣∣∣ψα

〉)]
dψβ (F.3)

LHS: ∫ [
∂ f ψβ

∂ t
− f

∂ψβ

∂ t︸︷︷︸
0

]
dψβ =

dỸβ

dt
(F.4)

RHS:

∫
−ψβ

∂

∂ψα

(
f
{

1
τmix

(Ŷα −ψα)+
dŶα

dt

})
dψβ =
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−
∫

∂

∂ψα

[
ψβ f{ }

]
dψβ︸ ︷︷ ︸

0 by Pope Exercise 12.1 [15]

+
∫

f{ }
∂ψβ

∂ψα︸ ︷︷ ︸
δαβ

dψβ (F.5)

=
1

τmix
(Ŷβ − Ỹβ )+(1−ζ )

dŶβ

dt

=
1

τmix
(Ŷβ − [ζỸ 0

β
+(1−ζ )Ŷβ ])+(1−ζ )

dŶβ

dt

=
ζ

τmix
(Ŷβ − Ỹ 0

β
)+(1−ζ )

dŶβ

dt
(F.6)

Evolution of the Unmixed Fraction

Equation (5.27) may be derived as follows. Differentiating (5.29) in time we get

dỸα

dt
= Ỹ 0

α

dζ

dt
+(1−ζ )

dŶα

dt
− Ŷα

dζ

dt

=− dζ

dt
(Ŷα − Ỹ 0

α )+(1−ζ )
dŶα

dt
(F.7)

Comparing (F.7) with (F.6) we see that during the reactor step the unmixed fraction evolves by

dζ

dt
=− ζ

τmix
. (F.8)

Note that while (5.30) invokes (F.8) in its derivation, (F.6) does not—it is an independent derivation that
relies on the choice of mixing model, in this case a variant of IEM as shown in (F.2).
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Appendix G

Limiting Behavior of the Turbulent Batch
Reactor Model

In Sec. 5.2.7, we state that our turbulent batch reactor model, Eq. (5.30), is equivalent to other approaches to
modeling turbulent combustion under certain limiting conditions. These limiting cases are discussed below.

G.1 Burke-Schumann Solution

When the reactants are initially completely mixed (ζ0 = 0) and the chemical kinetics are infinitely fast for
a single step reaction, Fuel+Air→ Products, the present model reduces to the Burke-Schumann solution
(see, e.g., [48]), where the cell mean mixture fraction is given by

Z̃ = ỸF +

(
1

1+ s

)
ỸP . (G.1)

G.2 Basic EDC

When the reactants are initially unmixed (ζ0 = 1) and the kinetics are infinitely fast, our model reduces to
the Eddy Dissipation Concept (EDC) as described in [41]. First, write (5.30) for Fuel (F) with ζ = 1:

ṁ′′′F = ρ
1

τmix
(ŶF− Ỹ 0

F ) . (G.2)

For infinitely fast kinetics, the Fuel composition in the mixed zone is

ŶF =

{
0 if Ỹ 0

F ≤ Ỹ 0
A/s (excess Air) ,

Ỹ 0
F − Ỹ 0

A/s if Ỹ 0
F > Ỹ 0

A/s (excess Fuel) .
(G.3)

Using (G.3) in (5.13) we recover the basic EDC model:

ṁ′′′F =−ρ
min(Ỹ 0

F ,Ỹ
0
A/s)

τmix
. (G.4)

G.3 Extended EDC

When the unmixed fraction is held constant (ζ = ζ0), our formulation may be cast as an extended EDC model
with the mixed reactor zone treated as a perfectly stirred reactor (PSR). Previous authors [45, 46, 124] have
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referred to the mixed reactor zone as the “fine structure region.” In the notation of [46], the extended EDC
reaction rate model, comparable to (5.30) in this paper, is given by

ρ
dỸα

dt
= ρ

γ2
λ

χ

τ?

(
Y 0

α −Y ?
α

)
, (G.5)

where γλ is the “ratio between the mass of the fine structure and the total mass of the subgrid structure”
and χ is the probability of fine structure burning [46]; in practice, both quantities are between 0 and 1. The
reactor residence time is denoted τ?, clearly comparable to our mixing time scale, and the fine structure
mass fraction is Y ?

α , clearly comparable to our mixed zone mass fraction Ŷα . Panjwani et al. [46] refer to Y 0
α

as the mass fraction of the “surrounding state,” thus equivalent to our initial cell mean Ỹ 0
α .
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Appendix H

Scalar Boundedness Correction

Second-order central differencing of the advection term in the scalar transport equation leads to dispersion
errors (spurious wiggles) and these errors, if left untreated, can lead to scalar fields which are physically
not realizable, e.g., negative densities. To prevent this, FDS employs a boundedness correction to the scalar
fields after the explicit transport step. The correction, which we describe below, acts locally and effec-
tively adds the minimum amount of diffusion necessary to prevent boundedness violations. This correction
does not make the scalar transport scheme total variation diminishing (TVD); it only serves to correct for
boundedness. Similar schemes are employed by others (e.g., [125]).

By default, FDS employs a TVD transport scheme (Superbee [19] for LES and CHARM [20] for DNS).
These TVD schemes are applied during the transport step and each can be shown to be TVD in one dimen-
sion under certain CFL constraints. However, except for Godunov’s scheme, the TVD proofs do not extend
to three dimensions [21]. Still, these schemes do a much better job than pure central differencing at mitigat-
ing dispersion error. Note that even though TVD schemes are applied, FDS still checks for boundedness in
case any small violations are not prevented by the flux limiter.

A simple case

For simplicity we start by considering a minimum boundedness violation for density in 1-D. That is, some-
where we have ρ < ρmin. Let ρ∗i denote the resulting density from the explicit transport step for cell i with
volume Vi. Our goal is to find a correction δρi which:

(a) satisfies boundedness, ρi = ρ∗i +δρi ≥ ρmin for all i

(b) conserves mass, ∑i δρiVi = 0

(c) minimizes data variation, ∑i |δρi| (i.e., we change the field as little as possible)

The basic idea is to apply a linear smoothing operator, L , to the density field in regions where boundedness
violations have occurred. So, the correction may be viewed as an explicit diffusion step applied to the
uncorrected field with diffusion coefficient c:

ρ = ρ
∗+ cL (ρ∗) (H.1)

To make matters simple, let us envision for the moment that the density in cell i is negative but that the
densities in cells i− 1 and i+ 1 are both safely in bounds (this actually is what happens most of the time
with dispersion error). We therefore want a correction that takes mass away from i−1 and i+1 and moves it
to i to make up the deficit. We know that for cell i the minimum change in mass and therefore the minimum
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correction that will satisfy boundedness is δρi = ρmin−ρ∗i . The operator L takes the form of the standard
discrete Laplacian. The correction for cell i is simply

ρi = ρ
∗
i +δρi

= ρ
∗
i +ρmin−ρ

∗
i

= ρ
∗
i + ci(ρ

∗
i−1−2ρ

∗
i +ρ

∗
i+1) (H.2)

Comparing the second and third lines, we find that the diffusion coefficient is given by

ci =
ρmin−ρ∗i

ρ∗i−1−2ρ∗i +ρ∗i+1
(H.3)

Based on the third line of (H.2), the correction for cell i may be thought of as the sum of the two mass fluxes
from its neighboring cells. The change in mass of cell i is δmi = δρiVi and is balanced by changes in mass
for cells i−1 and i+1:

δmi−1 =−ci (ρ
∗
i−1−ρ

∗
i )Vi

δmi+1 =−ci (ρ
∗
i+1−ρ

∗
i )Vi

In this case the sum of the mass corrections is zero, as desired:

i+1

∑
j=i−1

δm j = δρi−1Vi−1 +δρiVi +δρi+1Vi+1

=−ci (ρ
∗
i−1−ρ

∗
i )Vi + ci (ρ

∗
i−1−2ρ

∗
i +ρ

∗
i+1)Vi− ci (ρ

∗
i+1−ρ

∗
i )Vi

= 0

Realistic cases

The discussion above was to provide a simple case for understanding the basic idea behind the correction
method. In a realistic case we must account for multi-dimensional aspects of the problem and for the
possibility that neighboring cells may both be out of bounds. Consider a grid cell whose density is outside
the specified range. Denote this cell with a “c” for center. Its volume is Vc and density is ρ∗c , obtained from
the transport scheme. Let the subscript “n” denote any of the six neighboring cells (in other words, only
include cells which share a face with cell c). We want to correct any boundedness violations for the cell c
by shifting mass to or from its neighboring cells n:

ρc = ρ
∗
c +δρc ; ρn = ρ

∗
n +δρn (H.4)

We first define the total amount of mass we wish to shift:

mc = |ρ∗c −ρcut|Vc (H.5)

where ρcut is the appropriate upper or lower bound of the density. The amount of mass each neighboring
cell can accommodate without falling outside the range is:

mn =
∣∣∣min

[
ρmax,max[ρmin,ρ

∗
n ]
]
−ρcut

∣∣∣Vn (H.6)

The correction terms that guarantee mass conservation (Vc δρc =−∑Vn δρn) are:

δρc =±min
[
mc,∑mn

]
/Vc ; δρn =∓min

[
mc

∑mn
,1
]

mn/Vn (H.7)
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Next, to correct species mass fractions that are out of bounds, we follow the exact same procedure.

Zc = Z∗c +δZc ; Zn = Z∗n +δZn (H.8)

We define the amount of species mass we wish to shift:

mc = |Z∗c −Zcut|ρcVc (H.9)

where Zcut is either 0 or 1. The amount of species mass each neighboring cell can accommodate without
falling outside the range is:

mn =
∣∣∣min

[
1,max[0,Z∗n ]

]
−Zcut

∣∣∣ρnVn (H.10)

The correction terms that guarantee mass conservation (Vc ρc δZc =−∑Vn ρn δZn) are:

δZc =±min
[
mc,∑mn

]
/(ρcVc) ; δZn =∓min

[
mc

∑mn
,1
]

mn/(ρnVn) (H.11)
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Appendix I

Fluid-Particle Momentum Transfer

The trajectories of Lagrangian particles in FDS could be calculated with Forward Euler (FE) time inte-
gration. However, Forward Euler extracts momentum from the cell corresponding to each particle’s initial
position and this may cause large changes in the flow field and ultimately instability unless the time step is
extremely small. Consequently, a stable, single-step approximate solution is developed and is implemented
in FDS.

Several effects are neglected in this formulation. One is the effect of the change in droplet mass between
time steps. The droplet’s evaporation is not coupled to this model. This is justified because the change in
droplet mass per time step is small. A second neglected effect is the change in drag coefficient between
time steps. This is justified because of the large uncertainties in the drag coefficients. Modeling the time
derivative of the drag coefficient would not improve accuracy beyond these uncertainties, but it would slow
down the computation.

Relative velocities

Let mp denote the particle mass, u the particle velocity, Ap the particle cross-sectional area, Cd the particle
drag coefficient, ρ the fluid mass density, U the fluid velocity around the particle, Vg the volume occupied
by the fluid in a cell, M ≡ ρVg the fluid mass of a cell, np the number of particles in a cell, Mp ≡M/np the
average fluid mass per particle in a cell, and g the gravitational acceleration vector.

The equations of motion of the particles and fluid are formulated as follows from Newton’s second law,

mp
du
dt

=−1
2

ρCdAp(u−U)|u−U|+mpg (I.1)

Mp
dU
dt

=
1
2

ρCdAp(u−U)|u−U| (I.2)

The fluid Eq. (I.2) is a greatly simplified version of Eq. (4.36). It exists to get a reasonable estimate of the
momentum coupling between the fluid and particle phases. Because it neglects terms corresponding to the
pressure gradient, viscosity, etc., it is at best first-order accurate when those effects exist. However, unlike
first-order accurate Forward Euler, this approach is stable. Additional terms could be added to improve
accuracy in certain verification test cases, however, the current approach would solve these with a Forward
Euler like step, which can cause instabilities if these terms are not constant. Thus, for the moment these
terms are neglected despite their potential utility.

If we define ur ≡ u−U as the relative velocity between the fluid and the particle, we can find a single
equation for the relative velocity by dividing both equations by their respective masses (i.e., mp and Mp) and
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then subtracting the second from the first. This result is

dur

dt
=−1

2
ρCdAp

(
1

mp
+

1
Mp

)
ur|ur|+g . (I.3)

This equation can be written in compact form as follows:

dur

dt
=−Kpur|ur|+g ; Kp ≡

1
2

ρCdAp

(
1

mp
+

1
Mp

)
. (I.4)

This is the drag equation, which has no solution in terms of elementary functions. Our solution approach
first finds a solution neglecting gravity and then adds in a series for the gravity terms. ur ≡ ud + ug is
the decomposition of ur. The velocities ur and ud both have the same initial condition, ud(0) = ur(0) ≡
u(0)−U(0). And ud satisfies the drag equation without gravity, specifically

dud

dt
=−Kpud|ud| (I.5)

The solution subject to these initial conditions is

ud(t) =
u(0)−U(0)

1+βpt
; βp ≡ Kp|ur(0)| (I.6)

We can decompose ur to find a series solution for ug. The function ug can be written ug = ur−ud. So the
differential equation for ug is

dug

dt
=−Kp(ur|ur|−ud|ud|)+g ; ug(0) = ur(0)−ud(0) = 0 (I.7)

The Taylor series for ug about t = 0 is

ug(t) = ug(0)+ t
dug

dt
(0)+

t2

2
d2ug

dt2 (0)+
t3

6
d3ug

dt3 (0)+ · · · . (I.8)

The task now is to find the derivatives of ug at t = 0. The first derivative, dug/dt(0), can be seen to be g by
inspection, as we would expect from the solution without drag. The second derivative is more complicated,
and we find that

d2ug

d2t
=−Kp

d
dt
(ur|ur|−ud|ud|)+

dg
dt

=−Kp

(
|ur|

dur

dt
+ur

d|ur|
dt
−|ud|

dud

dt
−ud

d|ud|
dt

)

d2ug

d2t
(0) =−Kp

(
|ur(0)|

dur

dt
(0)+ur(0)

d|ur|
dt

(0)−|ud(0)|
dud

dt
(0)−ud(0)

d|ud|
dt

(0)
)

(I.9)

where

dur

dt
(0) =−Kpur(0)|ur(0)|+g

dud

dt
(0) =−Kpur(0)|ur(0)|

The derivative of the length of the velocity vectors (speed) must now be found. It can be shown that for an
arbitrary vector a,

d|a|
dt

=

(
a
|a|

)
· da

dt
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The derivatives of the vector lengths can be written as

d|ur|
dt

=

(
ur

|ur|

)
· dur

dt
=

(
ur(0)
|ur(0)|

)
· (−Kpur(0)|ur(0)|+g) (I.10)

d|ud|
dt

=

(
ud

|ud|

)
· dud

dt
=

(
ur(0)
|ur(0)|

)
· (−Kpur(0)|ur(0)|) (I.11)

Once all of this is written out and expanded, the second derivative of ug at t = 0 is

d2ug

d2t
(0) =−Kp

[
ur(0)

(
ur(0) ·g
|ur(0)|

)
+g|ur(0)|

]
=−βp

[
ur(0)

(
ur(0) ·g
|ur(0)|2

)
+g
]

(I.12)

This has a term parallel to the initial relative velocity and a term parallel to the gravitational acceleration
vector.

Assembling all these terms, ug can be found to be

ug(t) = gt−
βpt2

2

[
ur(0)

(
ur(0) ·g
|ur(0)|2

)
+g
]
+O(t3) (I.13)

Assembling Eqs. (I.6) and (I.13), the solution for ur is

ur(t) =
ur(0)

1+βpt
+gt−

βpt2

2

[
ur(0)

(
ur(0) ·g
|ur(0)|2

)
+g
]
+O(t3) ; βp ≡ Kp|ur(0)| (I.14)

Particle velocities and positions

The results of the previous section are not directly useful unless U(t) is known. U(t) can be found via the
conservation of momentum and this leads to a solution for the particle velocities and positions. The fluid
and particles can gain or lose momentum due to gravity. Drag forces exchange momentum between the fluid
and particle, which does not change the total momentum of the system. Summing the equations of motion
and integrating in time to find the total momentum at an instant, we find that

mpu(t)+MpU(t) = mpu(0)+MpU(0)+mpgt (I.15)

u(t)+αpU(t) = u(0)+αpU(0)+gt ; αp ≡
Mp

mp
(I.16)

After recognizing that u = U+ur and ur ≡ ud +ug, we can write that u = U+ud +ug Substituting that
result in and solving for U leads to

U(t)+ud(t)+ug(t)+αpU(t) = u(0)+αpU(0)+gt

U(t)+
ur(0)

1+βpt
+ug(t)+αpU(t) = u(0)+αpU(0)+gt

U(t) =
u(0)+αpU(0)+gt−ug

1+αp
− ur(0)

(1+βpt)(1+αp)
(I.17)

Eq. (I.17) can be substituted into Eq. (I.14) to get the solution for u.

u(t) = U(t)+
u(0)−U(0)

1+βpt
+ug

143



=
u(0)+αpU(0)+gt−ug

1+αp
− u(0)−U(0)

(1+βpt)(1+αp)
+

u(0)−U(0)
1+βpt

+ug

=
u(0)

1+βpt
+

(u(0)+αpU(0))βpt
(1+βpt)(1+αp)

+
gt +αpug

1+αp

=
u(0)

1+βpt
+

(u(0)+αpU(0))βpt
(1+βpt)(1+αp)

+gt−
αpβpt2

2(1+αp)

[
ur(0)

(
ur(0) ·g
|ur(0)|2

)
+g
]
+O(t3) (I.18)

Integrating Eq. (I.18) leads to an equation for the particle positions,

x(t) = x(0)+
(

u(0)+αpU(0)
1+αp

)
t −

αp(u(0)−U(0))
βp(1+αp)

ln(βpt +1)

+
gt2

2
−

αpβpt3

6(1+αp)

[
ur(0)

(
ur(0) ·g
|ur(0)|2

)
+g
]
+O(t4) (I.19)

Implementation in FDS

The following solutions are used to advance the particle positions forward in time by ∆t much like a normal
finite-difference scheme. The exact solution is used for the case without drag.

un+1 =
un

1+βp∆t
+

(un +αpUn)βp∆t
(1+βp∆t)(1+αp)

+g∆t−
αpβp(∆t)2

2(1+αp)

[
un

r

(
un

r ·g
|un

r |2

)
+g
]

(I.20)

xn+1 = xn +

(
un +αpUn

1+αp

)
∆t +

αp(un−Un)

βp(1+αp)
ln(βp∆t +1)+

g(∆t)2

2
(I.21)

αp ≡
ρVg

mpnp
(I.22)

βp ≡
1
2

ρCdAp

(
1

mp
+

1
Mp

)
|ur(0)| (I.23)

At first glance, the theoretical accuracy of the original equation for xn+1, Eq. (I.19), appears to be O(∆t3).
But computation reveals it is actually O(∆t2). This is due to the velocity error reducing the overall accuracy
of the position solution. The (∆t)3 term, therefore, may be dropped from Eq. (I.19) without loss of accuracy.
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Appendix J

Simplifications of the Radiation Transport
Equation

Antti Paajanen, VTT, Finland

The Radiation Transport Equation (RTE) for particles is given by Eq. (6.35) and repeated here:

s ·∇Iλ (x,s) =−
[
κp(x,λ )+σp(x,λ )

]
Iλ (x,s)+κp(x,λ ) Ib,p(x,λ )+

σp(x,λ )
4π

∫
4π

Φ(s,s′) Iλ (x,s′)ds′ (J.1)

An accurate computation of the in-scattering integral on the right hand side of Eq. (J.1) would be extremely
time consuming and require a prohibitive amount of memory because the individual intensities in each
location would have to be stored. The in-scattering integral can be approximated by dividing the total 4π

solid angle into a “forward angle,” δΩl , and an “ambient angle,” δΩ∗ = 4π−δΩl . For compatibility with
the FVM solver, δΩl is set equal to the control angle given by the angular discretization. However, it is
assumed to be symmetric around the center of the control angle. Within δΩl the intensity is Iλ (x,s) and
elsewhere it is approximated as

U∗(x,λ ) =
U(x,λ )−δΩl Iλ (x,s)

δΩ∗
(J.2)

where U(x) is the total intensity integrated over the unit sphere. The in-scattering integral in Eq. (J.1) can
now be approximated as

σp(x,λ )
4π

∫
4π

Φ(s,s′) Iλ (x,s′) ds′ ≈ σp(x,λ )
(

χf Iλ (x,s)+
1

δΩ∗
(1−χf)

∫
δΩ∗

Iλ (x,s′) ds′
)

= σp(x,λ )
(

χf Iλ (x,s)+(1−χf)U∗(x,λ )
)

(J.3)

where χf = χf(r,λ ) = χf(x,λ ) is a fraction of the total intensity originally within the solid angle δΩl that is
scattered into the same angle, δΩl . The calculation of χf is discussed in section 6.3.3. Using the definition
of U∗ in Eq. (J.2), the RTE is now:

s ·∇Iλ (x,s) =−κp(x,λ ) Iλ (x,s)+κp(x,λ ) Ib,p(x,λ )+σp(x,λ )(1−χf)

(
U(x,λ )−δΩl Iλ (x,s)

δΩ∗
− Iλ (x,s)

)
(J.4)

An effective scattering coefficient is next defined

σp(x,λ ) =
4π

4π−δΩl

(
1−χf(x,λ )

)
σp(x,λ ) (J.5)
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Using Eq. (J.5) and δΩ∗ = 4π−δΩl , the scattering coefficient can be written as:

σp(x,λ ) =
σp(x,λ )

4π

δΩ∗

(1−χf)
(J.6)

Substituting this in the previous form of the RTE yields:

s ·∇Iλ (x,s) =−κp(x,λ ) Iλ (x,s)+κp(x,λ ) Ib,p(x,λ )+
σp(x,λ )

4π

(
U(x,λ )−

(
δΩ

l +δΩ
∗
)

Iλ (x,s)
)

(J.7)

Using δΩl +δΩ∗ = 4π , the RTE simplifies to:

s ·∇Iλ (x,s) =−
[
κp(x,λ )+σp(x,λ )

]
Iλ (x,s)+κp(x,λ ) Ib,p(x,λ )+

σp(x,λ )
4π

U(x,λ ) (J.8)
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Appendix K

Absorption Coefficients of Liquid Fuels

The burning rate of liquid pool fires depends in part on the convective and radiative heat feedback from
the flames to the fuel surface. For large pool fires, radiation heat transfer dominates. Studies have been
conducted to determine the spectra of emitted radiation [126] as well as to characterize radiation absorption
by gases within the flame [127]. Depending on the fuel, thermal radiation can be absorbed at the surface
or in depth. For fuels such as wood, most of the incident radiation is absorbed within a thin layer near
the surface. For semi-transparent materials such as plastics or liquid fuels, thermal radiation may penetrate
deeper. The in-depth radiation absorption by semi-transparent fuels has been studied for PMMA [128],
polymer films [129] and liquid pool fires [126]. Most of the research related to the in-depth radiation
absorption in liquids considers the boil-over of liquid pool fires on water [130]. The effect of in-depth
radiation absorption on evaporation of fuel droplets has also received some attention [131]. Most liquids
are highly selective absorbers, absorbing intensively in some wavelength regions while being transparent
in others. This results in radiation transport models that are both computationally expensive and for which
experimental data is scarce. In this appendix, we attempt to characterize the absorption of radiation by liquid
fuels using effective absorption coefficients similar to those used in Refs. [132] and [133].

Where data on absorption coefficients of liquids exists in the open literature, such as the Coblentz
Society data found on the NIST Chemistry WebBook [134], it usually only contains data for wavelengths
from approximately 2.5 µm upwards. A large part of the total energy in the emission spectrum of flames may
easily be contained in wavelengths shorter than 2.5 µm. However absorption spectra that begin from 1 µm
exists for a few liquids, including toluene ([135], [136]), methanol [137], benzene [138] and water [139].
Furthermore, Ref. [126] includes spectrally resolved transmission spectra of ethanol, heptane, JP-8, and an
ethanol-toluene blend. Complex refractive index spectra for a few diesel fuels were reported in Ref. [131].
Different diesel fuels have slightly different absorption spectra, due to differing additives. However the
data reported in Ref. [131] can perhaps be used to obtain an order of magnitude estimate for the absorption
coefficient of diesel fuel.

Often we are not interested in resolving the spectra of the transmitted radiation; rather, we are interested
in modeling the total transmitted radiation. In these cases, it is convenient to write the radiation transport
equations in terms of mean absorption coefficients. This is done to avoid the time-consuming integrations
over all wavelengths. For this reason, a number of mean absorption coefficients have been introduced,
such as the Rosselland-mean absorption coefficient and the Planck-mean absorption coefficient. These
correspond to the optically-thin approximation and the Rosselland diffusion approximation of radiation
transport. The absorption coefficients of liquids are highly wavelength dependent and are even transparent
in some areas. In this case, the Planck-mean absorption coefficients are too large by several orders of
magnitude. It is preferable to determine an effective absorption coefficient that attempts to replicate the
absorption of radiation over a certain path length over which the majority of the radiation is absorbed.
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Table K.1 lists effective absorption coefficients for a few selected liquids. It contains two types of
absorption coefficients. One type is determined by assuming the incoming radiation is blackbody radiation
at a temperature of 1450 K. The other type is based on actual flame radiation spectra. If the wavenumber
range is listed, then a blackbody temperature 1450 K is assumed in calculating the transmission. If the
wavenumber range is not listed, then transmission data from Ref. [126] is used. The path length is 3 mm in
all cases.

The assumption of blackbody radiation is adequate for sooty flames in which radiation from soot dom-
inates the flame radiation spectra. However, for fuels with low sooting flames, the incoming radiation
spectrum differs considerably from the blackbody spectrum. This explains the large difference in listed
absorption coefficients for ethanol and methanol. The ethanol absorption coefficient is based on actual
emission spectra of an ethanol flame, whereas the methanol absorption coefficient is calculated based on the
blackbody spectrum. The correct value for methanol is likely to be closer to that of ethanol.

Table K.1: Effective absorption coefficients for selected liquids.

Liquid Wavenumber Range (1/cm) Effective Absorption Coefficient, κ

JP-8 [126] - 301.4
Ethanol-Toluene blend [126] - 680.1
Ethanol [126] - 1534.3
Heptane [126] - 187.5
Toluene [136] 436-6500 160.8
Methanol[137] 2-8000 52
Water [139] 1-15000 1578
Benzene [138] 11.5-6200 123
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Appendix L

Solving the 1-D Heat Conduction Equation

The 1-D heat conduction equation in Cartesian coordinates is:

ρscs
∂Ts

∂ t
=

∂

∂x

(
ks

∂Ts

∂x

)
+ q̇′′′s (L.1)

In cylindrical and spherical coordinates, the equation becomes:
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∂ t
=

1
rI

∂

∂ r

(
rIks

∂Ts

∂ r

)
+ q̇′′′s (L.2)

where I is 1 for cylindrical and 2 for spherical coordinates. Since for I = 0, the Cartesian formulation is
recovered, from this point on we will consider the general form of the equation (L.2). The indexing system
used for the discretization of the equations is shown in Fig. L.1.

The temperature at the center of each solid cell, Ts,i, is updated in time using a Crank-Nicolson scheme:
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+ q̇′′′s (L.3)

ki+ 1
2

is the thermal conductivity at the border of the cells i and i+1, δ ri is the width of cell i, and δ ri+ 1
2

is
the distance from the center of cell i to the center of cell i+ 1. The radial coordinate, rc,i, denotes the cell
center:

rI
c,i =


(r2

i − r2
i−1)/(2δ ri) I = 1 (cylindrical)√

(r3
i − r3

i−1)/(3δ ri) I = 2 (spherical)
(L.4)

The temperatures at the front and back surface of a Cartesian slab (or center of a cylinder or sphere) are
determined from the boundary conditions. In any of the coordinate systems, the boundary condition at the
front surface is

− ks,1
T n+1

s,1 −T n+1
s,0

δ r 1
2

= q̇′′c + q̇′′r (L.5)

Note that Ts,0 does not represent the gas temperature, but rather it is used to establish the temperature gradient
at the surface. Note also that the thermal conductivity is that of the first node. The convective heat flux is

q̇′′c = h
(

Tg−
1
2

(
T n

s, 1
2
+T n+1

s, 1
2

))
(L.6)
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Figure L.1: Solid phase nodes and indexes. r is the radius from the back of the material.

where Tg is the gas temperature in the first grid cell abutting the surface, and Ts, 1
2

is the surface temperature,
defined as the average of Ts,0) and Ts,1). (T n+1)4 can be approximated using a Taylor series expansion:

(T n+1)4 ≈ (T n)4 +4(T n)3(T n+1−T n) (L.7)

which leads to approximation for the radiative flux
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Now the front boundary condition is
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The wall surface temperature is defined:
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(L.10)

and therefore the boundary condition becomes
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Rearranging terms, the temperature at node 0 becomes:
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Note that RFACF2 and similar names are used in the actual source code to represent these quantities. In case
of non-insulated backing in Cartesian geometry, the temperature of virtual node N+1 is calculated the same
way. For a Cartesian geometry with an insulated backing or for cylindrical and spherical geometries, ε , q̇′′r,in,
and h are set to 0.
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After re-arranging the terms, Eq. (L.3) becomes (using the nomenclature of the source code) for each
wall cell i:

Bi T n+1
i−1 +Di T n+1

i +Ai T n+1
i+1 =Ci i = 1, ...,N (L.13)
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To solve Eq. (L.13), a tri-diagonal linear solver is used:

C1 =C1−B1 ·QDXKF
CN =CN−AN ·QDXKB

D1 = D1 +B1 ·RFACF2
DN = DN +AN ·RFACB2
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151


	FDS Developers
	About the Developers
	Preface
	Disclaimer
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	Overview of the FDS Model
	LES Formalism
	Numerical Grid
	Mass and Species Transport
	Low Mach Number Approximation
	Momentum Transport
	Combustion and Radiation
	Combustion
	Radiation

	Solution Procedure

	Mass, Species, and Enthalpy Transport
	The Equation of State
	Mass and Species Transport
	Flux Limiters
	Time Splitting for Mass Source Terms
	Boundary Conditions for Temperature, Species Mass Fraction, and Density

	The Velocity Divergence
	Mass and Energy Source Terms
	Diffusion Terms
	Corrections for Numerical Mixing
	Computing the Temperature
	Sensible Enthalpy
	Computing the Background Pressure Rise
	Combining Pressure Zones


	Momentum Transport and Pressure
	Large Eddy Simulation (LES)
	The DNS Momentum Equation
	The LES Momentum Equation
	Production of Subgrid Kinetic Energy

	Models for the Turbulent Viscosity
	Constant Coefficient Smagorinsky Model
	Dynamic Smagorinsky Model
	Deardorff's Model (Default)
	Vreman's Model
	Renormalization Group (RNG) Model
	Thermal Conduction and Gas Species Diffusion
	Numerical Implementation
	Transport Coefficients for Direct Numerical Simulation (DNS)

	Coupling the Velocity and Pressure
	Simplifications of the Momentum Equation
	Finite-Difference Approximation of the Momentum Equation
	The Poisson Equation for Pressure
	Iterative Procedure for Updating Velocity

	Velocity Boundary Conditions
	Smooth Walls
	Rough Walls
	Wall Model Implementation
	Wall Damping of the Turbulent Viscosity

	Time Step and Stability Constraints
	The Courant-Friedrichs-Lewy (CFL) Constraint
	The Von Neumann Constraint
	Realizable Mass Density Constraint
	Realizable Fluid Volume Constraint
	Heat Transfer Constraint
	Adjusting the Time Step


	Combustion (Chemically Reacting Flows)
	Lumped Species Approach
	Relationship between Lumped and Primitive Species
	Default Hydrocarbon Combustion Chemistry

	Turbulent Combustion
	Mixing-Controlled Fast Chemistry (Default)
	Heat Release Rate
	Extinction
	Reaction Time Scale Model
	Turbulent Batch Reactor Model
	A Simple Subgrid Mixing Environment
	Mean Chemical Source Term
	Evolution of the Composition in the Mixed Reactor Zone
	Time Integration for Mixing and Reaction
	Infinitely Fast Chemistry (Default)
	Finite-Rate Chemistry (Arrhenius Reaction)
	Change in Species Compositions


	Thermal Radiation
	Radiation Transport Equation
	Radiation Source Term
	Radiation Contribution to Energy Equation
	Correction of the Emission Source Term

	Numerical Method
	Angular Discretization
	Spatial Discretization
	Boundary Conditions

	Absorption and Scattering of Thermal Radiation by Droplets/Particles
	Absorption and Scattering Coefficients
	Approximating the In-Scattering Integral
	Forward Fraction of Scattering
	Solution Procedure
	Heat absorbed by droplets


	Solid Phase
	The Heat Conduction Equation for a Solid
	Radiation Heat Transfer to Solids
	Convective Heat Transfer to Solids
	Component-Averaged Thermal Properties

	Pyrolysis Models
	Specified Heat Release Rate
	Solid Fuels
	Phase Change Reactions
	Liquid Fuels
	Shrinking and Swelling Materials

	Aerosol Deposition
	Gravitational Settling
	Thermophoretic Deposition
	Turbulent Deposition


	Lagrangian Particles
	Particle Transport in the Gas Phase
	Drag Reduction

	Liquid Droplet Size Distribution
	Spray Initialization
	Heating and Evaporation of Liquid Droplets
	Filtered Volumetric Source Terms
	Lagrangian Contribution to the Velocity Divergence

	Fire Suppression by Water
	Droplet Transport on a Surface
	Reduction of Pyrolysis Rate due to Water

	Using Lagrangian Particles to Model Complex Objects
	Porous Media (Filters, Screens, Metal Meshes, and Similar Materials)

	Turbulent Dispersion

	Fire Detection Devices
	Sprinklers
	Heat Detectors
	Smoke Detectors

	Heating, Ventilation, and Air Conditioning (HVAC)
	Governing Equations
	Solution Procedure
	Filtration
	Node Losses
	Duct Losses
	Heating and Coiling Coils

	Leakage
	Coupling the HVAC solver to FDS
	Boundary Conditions for the HVAC Solver
	Boundary Conditions for the FDS Hydrodynamic Solver


	Bibliography
	Nomenclature
	A Velocity Divergence Constraint for Large-Eddy Simulation of Low-Mach Flows
	The Divergence Constraint
	From Continuity
	From Sensible Enthalpy
	Comparison

	The Discrete Divergence
	Factoring the Discrete Flux Divergence
	Example: Pure Upwinding
	Example: Central Differencing
	General Implementation: Using Flux Limiters

	Decomposing the Time Derivative
	Equivalence between Divergence Expressions
	Simplifications for Constant Specific Heat

	Absorption Coefficients of Gaseous Fuels
	A Simple Model of Flame Extinction
	Numerical Methods for Integration of Complex Chemistry
	The Unmixed Fraction
	Limiting Behavior of the Turbulent Batch Reactor Model
	Burke-Schumann Solution
	Basic EDC
	Extended EDC

	Scalar Boundedness Correction
	Fluid-Particle Momentum Transfer
	Simplifications of the Radiation Transport Equation
	Absorption Coefficients of Liquid Fuels
	Solving the 1-D Heat Conduction Equation

