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Summary. We present a model for occupants’ exit selection in emergency evacu-
ations. The model is based on the game theoretic concept of best response dynam-
ics, where each player updates his strategy periodically according to other players’
strategies. A fixed point of the system of all players’ best response functions defines
a Nash equilibrium of the game. In the model the players are the occupants and
the strategies are the possible target exits. We present a mathematical formulation
for the model and analyze its properties with simple test simulations.

1 Introduction

Selection of the exit route is one of the most important decisions that oc-
cupants will face in an emergency evacuation. This decision is influenced by
many factors, such as personal characteristics, building geometry, and obser-
vations concerning the dynamic evacuation situation. It is natural that one of
the evacuees’ main goals is to get out of the building as fast as possible. On
the other hand, evacuees tend to prefer familiar alternatives, because they
feel that unknown alternatives increase the threat [1]. The visibility of exits
also influences the decisions of occupants, since the information of popula-
tion and conditions at an exit are limited if the exit is not visible [2]. In fire
evacuations, occupants will naturally avoid the routes that are smoky or in
flames. After all, the ultimate goal of evacuees is to get out of the building
alive and the above mentioned tendencies are just means of achieving this
goal.

The decisions that occupants make on their exit routes will affect the
outcome of the evacuation. Therefore, it is important to take these decisions
into account in evacuation simulation models. Some evacuation models make
the assumption that all evacuees will head straight to the nearest exit at the
start of evacuation. Also many prescriptive fire codes implicitly assume that
the total exit width of buildings is used in evacuation. Experience and studies
have shown that this assumption is unrealistic in many occasions [1, 3]. Let us
briefly recall some previous studies in the field of exit selection modeling. The
exit selection model of buildingEXODUS [2] uses an adaptive decision making
model, where the evacuees are allowed to change their target exit a few times
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during the evacuation. This model considers several factors that influence the
decision, e.g., occupants’ familiarity with the exits, visibility of exits and the
lengths of queues at the exits. In a subsequent article also the effect of fire
conditions on exit selection have been considered [4]. The buildingEXODUS
model uses a heuristic approach, and specific formulas and parameters of
the model have not been published. Lo et. al [5] presented a game theoretic
approach for exit selection. The model simplifies the exit selection situation
to a two player zero sum game, where the crowd is considered to play a
"virtual entity”.

In this article, we present a game theoretic model for evacuees’ exit se-
lection. The model is based on the game theoretic concept of players’ best
response functions. A fixed point of the system of these functions defines
a Nash equilibrium of the game. In our game theoretic model, we interpret
evacuees’ updating of their best response actions as an adaptive dynamical
model. The model has two stages: on one hand the evacuees try to select the
fastest exit route. On the other hand, there are also other factors affecting
the decision making, like smokiness, familiarity, and visibility of exits. These
factors are taken into account by adding constraints to the evacuation time
minimization problem.

It is quite obvious that factors like distances to the exits, queue length,
and the visibility of the exits need to be taken into account in an exit se-
lection model. These things are considered in our model as well as in some
previous approaches. The key contribution of this article is to formulate and
analyze the model in a game theoretic framework. We present a mathematical
formulation for the reaction function model. We also analyze the emerging
phenomena, such as convergence to a Nash equilibrium, using numerical sim-
ulations.

2 The Model and a Game Theoretic Formulation

In this chapter we present a game theoretic model for exit selection. In the
model, the occupants update their decisions based on their best response
functions. A fixed point of the system of these functions is a Nash equilibrium
of the game. Best response dynamics have been successfully used in many
fields of science, e.g., in telecommunications networks [6, 7] and various road
traffic situations [8].

To formulate our exit selection model as an N-player game in a normal
form, we begin by defining the concepts of best response and Nash equilib-
rium. For thorough explanations of the concepts, see [9].

2.1 An N-Player Game

In a normal form static game, each of the N players, or agents, playing the
game selects a strategy s;, where i refers to agent i. Let S; be the set of
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all strategies for agent 7, so that s; € S;. The payoff of the game for agent
1 is a function of the strategies of all players. This function is called payoff
function and it is denoted by w;(s1,...,s,). The objective of each player is
to select the strategy, which maximizes his own payoff, given that also other
players maximize their payoffs. In an implementation of this one-stage game
the players act according to their maximizing strategies.

A Nash equilibrium (NE) of the game is a profile of strategies (s7,...,s})
such that each player’s strategy is an optimal response to the other players’

optimal strategies. Hence, a strategy profile s* = (s3,...,s%) is a NE if sf
solves
* * * * *
sj = arg max Wi(ST5 -85 1,5y Sia1s--+15n) (1)

for all 7. This means that no player can profit by deviating from NE if the
others play the NE strategies. When the sets S; are finite, a game may not
have a Nash equilibrium in pure strategies, but in mized strategies, i.e., when
the strategies are distributions over the sets of pure strategies S;, any game
has at least one equilibrium. This result was shown by John Nash in his
seminal paper in 1950 [10].

The best response function of player i is defined by

si := BR;(s_;) := arg max wi(s), 5_4), (2)
where s_; := (S1,...,8i-1,Si41, .- -, Sn). This function defines the strategy s;

that is the best response of player i to the the other players’ strategies, s_;,
i.e., the strategy that maximizes the payoff of player ¢ when the others play
S_j.

The best response function is also called best response correspondence,
since BR(s_;) can be a set. It is easy to show that if a strategy profile
5= (51,...,38,) satisfies the equation

S; = BRi(gfiL for all i, (3)

then 5 is a NE of the game. Mathematically, note that 5 is a fized point of
the system of all players’ best response correspondences.

Under suitable assumptions, an iterative process, where players update
their strategies according to their best response correspondences, will con-
verge to a Nash equilibrium [11]. In this paper we shall consider a familiar
fixed point iteration to define the NE and interpret it as an adaptive process
for the exit selection dynamics.

2.2 Exit Selection Model

In the exit selection model we assume that the occupants tend to select the
exit route through which the evacuation is the fastest. However, there are also
other factors influencing the decision. We will include three other factors in
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this model: familiarity and visibility of the exits and the fire related conditions
at the exits.

To calculate an estimate for an agent’s evacuation time through an exit,
one needs to consider two things, the distance to the exit and the queue
length in front of the exit. Thus, the estimated evacuation time of an agent is
calculated as the sum of estimated moving time and estimated queuing time.
The moving time is estimated simply by dividing the distance to the exit by
the walking speed of the agent.

The queuing time of an agent at an exit depends on the width of the exit
and on the number of the other agents that are heading to that exit and are
closer to it than the agent itself. Adding the queue length into the model
in a fashion where the queuing time of an agent depends not only on the
locations of other agents but also on their target exits, makes the decision of
an agent dependent on the decisions of the others. This makes this model a
game model.

During an evacuation, the fastest exit may change. In these situations the
agents should be able to react to the new situation and change their target
exits. This is modeled by updating the best response functions of each agent
in certain periods of time.

The familiarity, visibility, and conditions at the exit are taken into account
by constraining the set of feasible exits according to these factors. These fac-
tors divide the exits into six groups that have a preference order. Each agent
will select an exit from the nonempty group that has the highest preference.
If there are several exits in this group, the selection is made by minimizing
the evacuation time as presented above.

2.3 Mathematical Formulation of the Model

We refer to the agents with indices 7 and j, where 4,5 € N = {1,2,...,N}.
The strategies of the agents are the exits ey, k € K = {1,2,...,K}. We
shall also use the notation s; € {e1,...,ex} = S;, i € N for strategies and
strategy sets. We denote the profile of all agents’ strategies by

s:=(81,...,8N) €Sy X -+ xSy =5, (4)

and will also use notation s_; := (s1,...,8i—1,8i+1,.-.,8n) € S_; for the
strategies of all other agents but agent ¢, and notation (s;,s_;) for the whole
strategy sequence s.

Let us denote the positions of agent ¢ and exit e; by r; and by, respec-
tively, and let r := (rq,...,ry. Agent ¢’s distance from exit ey, is

d(ex;r;) = ||r; — byl. (5)

Now, the payoff function of agent ¢ is the estimated time of evacuation,
T;(8i, S—i; 1), which he attempts to minimize. It is the sum of estimated queu-
ing time and estimated moving time. When agent ¢ chooses strategy s; = ey,
T; is evaluated as
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Ti(er,s—i;r) = BrAier, s—i; 1) + Ti(er; r5), (6)

where i is a scalar describing the capacity of exit eg, A;(ex,s—;;r) is the
number of other agents that are heading to the same exit e, as agent i and
are closer to it, and 7;(eg;r;) is the estimated moving time of agent ¢ to exit
er. The function A; is defined by A;(ex,s—;;r) = |A;(ex, s—i;1)|, where

Ai(ex, s—iyr) = {j #il|s; = ex, d(ex;r;) < d(ex;ri)}, (7)

and | - | denotes the number of elements in a subset of N.
The estimated moving time to an exit is calculated by

1

Ti(ex; i) = —gd(er;ri), (8)
i

where v{ is the moving speed of agent i. The strategy of agent i is the best
response to the other agents’ strategies:

si = BR;(s_;;r) = arg migl T;(si, s_i;1). (9)
s€S;

A Nash equilibrium of the game satisfies s} = BR;(s*;r) for all 4.

The effects of familiarity, visibility and fire related conditions are taken
into account by defining three binary variables

fam,(ex), vis(ex; r;), con(eg;r;), Vi e N, k € K,
where

1, if exit ey is familiar to agent 4
0, if exit e is not familiar to agent 4

Jam;(e) = {

vis(eniri) = 1, if exit ey is visible to agent @
ko T 0, if exit ey is not visible to agent @

con(ex;ti) = { 1, conditions are tolerable at exit ej for agent ¢ .
B 0, conditions are intolerable at exit e; for agent ¢
Now the exits can be divided into groups that have preference numbers from
one to six according to the values of these binary variables. The smaller
the preference number is, the more preferable the exit. Definitions for these
numbers are presented in Table 1. The familiarity of an exit is considered to
be more important to the agents than the visibility. This is based on social
psychological findings, according to which evacuees prefer familiar routes even
if there were faster unfamiliar routes available [1, 3].
Hence, the complete exit selection model can be presented for each agent
i € N as follows:
s; = BR;(s_;;r) = arg I/neingi(sé,s_i;r), (10)
S?‘, i

st. s, € Ei(2),

where F;(Z) is the non-empty exit group with the best preference number z
for agent 1.
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preference number| exit group |vis(eg,r;)|fam;(ex)|con(ex,r;)

1 E:(D) 1 1 1
2 Ei(2) 0 1 1
3 E;(3) 1 0 1
1 Ei(4) 1 1 0
5 E:(5) 0 1 0
6 E;(6) 1 0 0

No preference 0 0 1

No preference 0 0 0

Table 1. The preference numbers of exit groups used in our model. The smaller
the preference number is, the more preferable the exit. The combinations of the
last two rows have no preference. This is because the evacuees are unaware of the
exits that are unfamiliar and invisible, and thus cannot choose these exits.

2.4 Additional Features of the Model

There are some other matters that need to be taken into account in the exit
selection model but are not included in the basic formulation above.

Sometimes an alternative exit is only slightly faster than the current target
exit. We assume that an agent may not always notice the small difference,
or may not react to them. This is why a patience parameter is added to the
model. The parameter describes how much faster an alternative exit needs to
be in order for an agent to change its target exit. This behavior can be taken
into account by subtracting the patience parameter from the evacuation time
through the current target exit. Another possibility would be to define the
patience parameter as a proportion of the estimated evacuation time, instead
of absolute seconds. In this case the estimated evacuation time of the current
exit is multiplied by the parameter, which can have values between zero and
one.

In some situations, an agent may not be able to estimate the queue length
in front of an exit. This is especially the case in situations where the agent
cannot see the exit. In these cases the estimated evacuation time should not
depend on the queuing time, and thus, Eq. (6) should be replaced by

Ti(ex,s—i;r) = Bri(er, s—i;r) + vis(er, ri)Ti(er; Ts). (11)

This makes the estimated evacuation times shorter for the invisible exits.
However, this does not affect the functioning of the model, because the es-
timated evacuation times are only compared between exits in the same exit

group.
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3 Computational Results

The presented exit selection model has been implemented to the FDS+Evac
software [12,13], which enables the use of fire related data in the model.
However, in this article we study its computational properties using a simple
cellular automata based program. The focus of our analysis is on the conver-
gence properties of the iterative model. We shall use fixed point iteration to
simulate the convergence of best response dynamics to a Nash equilibrium.
The iterative process can be presented with an equation as follows:

st = BRy(s' ;r), Vie N, t > 1. (12)

Thus, in every iteration round the strategy of agent ¢ is his best response
to the other players strategies in the previous round. Basically, this means
that all agents are considered to update their strategies simultaneously. This
parallel update algorithm is not the only possible method for updating a best
response algorithm. For descriptions of other possible approaches, see [6].

In the following examples, we present numerical results on the convergence
of the model in a situation, where the agents do not move during the iteration.
The agents just update their target exits at each iteration as best responses
to the other agents’ decisions. Basically, these iterations could be interpreted
as situations where, at each iteration round, all agents tell each other the exit
they are heading to. Then, in the next round, they all update their target
exits as best responses to the strategy profile of the previous round. It turns
out that in fairly large agent populations, the iteration converges to a NE
with a quite small number of iterations. The fast convergence is a little bit
astonishing, since fixed point iterations do not always converge very well for
games with pure strategies [9].

Figure 1 shows how the iteration converges to a NE in a simple test ge-
ometry. Total of 100 agents are located randomly into a square 40 mx 40 m
room with two exits. Both of the exits are on the same wall and they are
represented in the figures with large circles. The circles representing the left-
hand and right-hand exits are white and black, respectively. The white exit
is twice as wide as the black exit. The smaller white and black circles repre-
sent the agents and their target exits. In the initial position, the target exit
of each agent is picked randomly. At each iteration, the agents update their
target exits as a best responses to the current situation. In this example, the
iteration converged into a NE in five iterations. In the equilibrium, a small
majority of the agents are heading to the wider white exit. The widths of the
exits are not very significant in this simulation, because the population den-
sity is quite small, and thus, the estimated queuing times are small relative
to the estimated moving times. As population density increases, the queu-
ing times increase relative to the moving times and the exit width becomes
more important. As a result, a larger proportion will select the wider exit as
population density increases. This can be seen in Fig. 2, which shows Nash
equilibria for the same geometry with 300 and 500 agents.
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Fig. 1. An example of the convergence of the iteration.
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Fig. 2. Nash equilibria for simulations with 300 and 500 agents.

The graph in Fig. 3 describes the dependence between the number of
agents and the average number of iterations needed to achieve the equilib-

rium. The number of iterations seems to increase linearly and even in large
crowds the amount is very reasonable.
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In these simulations the patience parameter is set to zero.

It is quite obvious that the value of the patience parameter affects the
number of iterations needed to achieve a NE. This is because as the pa-
rameter value increases, some strategy profiles that were not equilibria with
a smaller patience parameter become equilibria. Figure 3 shows the depen-
dence between the patience parameter and required iterations in the simple
test geometry. The number of iterations rapidly decreases as the value of the
parameter is increased from zero. As a consequence the equilibrium becomes

really fast to compute when the parameter has nonzero values.

Average number of iterations

Fig. 4. The average number of iterations to NE for 400 agents versus the patience

Fatience parameter

parameter. A unit measure of the patience parameter is one second.
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4 Discussion

We introduced a game theoretic reaction function model for evacuees’ exit
selection. The model considers several factors influencing the decision maker,
such as distances to the exits, amount of crowd in front of the exits, and
familiarity and visibility of the exits. The effects of these factors have been
discussed in some previous articles [2, 4], however our approach is somewhat
different as we formulate and analyze the model in a game theoretic frame-
work. In the model, we interpret the exit selection of agents as an adaptive
dynamical process, where agents update their decisions according to their
best response functions and take an action accordingly. A Nash equilibrium
of the game is a fixed point of the system of all agents’ best response func-
tions.

We also presented simple test simulations to analyze the properties of the
model. It was found out that an iterative implementation of the model pro-
duces a Nash equilibrium with a reasonable number of iterations. When the
patience parameter was added to the model the number of required iterations
reduced rapidly as the parameter value was increased from zero. The effect of
the parameter is natural, because as the value of the parameter is increased,
some strategy profiles that were not equilibria with smaller parameter values
become equilibria. Fixed point iterations do not always converge for games
with pure strategies, and thus, analysis of the convergence properties of our
model is a interesting topic for future research.
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